Demonstration of background rejection using deep convolutional neural networks in the NEXT experiment

被引:18
|
作者
Kekic, M. [19 ,20 ,22 ]
Adams, C. [2 ]
Woodruff, K. [3 ]
Renner, J. [19 ,20 ,22 ]
Church, E. [21 ]
Del Tutto, M. [5 ]
Hernando Morata, J. A. [22 ]
Gomez-Cadenas, J. J. [9 ,16 ]
Alvarez, V [23 ]
Arazi, L. [6 ]
Arnquist, I. J. [21 ]
Azevedo, C. D. R. [4 ]
Bailey, K. [2 ]
Ballester, F. [23 ]
Benlloch-Rodriguez, J. M. [16 ,19 ,20 ]
Borges, F. I. G. M. [14 ]
Byrnes, N. [3 ]
Carcel, S. [19 ,20 ]
Carrion, J., V [19 ,20 ]
Cebrian, S. [24 ]
Conde, C. A. N. [14 ]
Contreras, T. [11 ]
Diaz, G. [22 ]
Diaz, J. [19 ,20 ]
Diesburg, M. [5 ]
Escada, J. [14 ]
Esteve, R. [23 ]
Felkai, R. [6 ,7 ,19 ,20 ]
Fernandes, A. F. M. [13 ]
Fernandes, L. M. P. [13 ]
Ferrario, P. [9 ,16 ]
Ferreira, A. L. [4 ]
Freitas, E. D. C. [13 ]
Generowicz, J. [16 ]
Ghosh, S. [11 ]
Goldschmidt, A. [8 ]
Gonzalez-Diaz, D. [22 ]
Guenette, R. [11 ]
Gutierrez, R. M. [10 ]
Haefner, J. [11 ]
Hafidi, K. [2 ]
Hauptman, J. [1 ]
Henriques, C. A. O. [13 ]
Herrero, P. [16 ]
Herrero, V [23 ]
Ifergan, Y. [6 ,7 ]
Jones, B. J. P. [3 ]
Labarga, L. [18 ]
Laing, A. [3 ]
Lebrun, P. [5 ]
机构
[1] Iowa State Univ, Dept Phys & Astron, 12 Phys Hall, Ames, IA 50011 USA
[2] Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA
[3] Univ Texas Arlington, Dept Phys, POB 19059, Arlington, TX 76019 USA
[4] Univ Aveiro, Inst Nanostruct Nanomodelling & Nanofabricat i3N, Campus Santiago, P-3810193 Aveiro, Portugal
[5] Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA
[6] Ben Gurion Univ Negev, Fac Engn Sci, Nucl Engn Unit, POB 653, IL-8410501 Beer Sheva, Israel
[7] Nucl Res Ctr Negev, IL-84190 Beer Sheva, Israel
[8] Lawrence Berkeley Natl Lab, 1 Cyclotron Rd, Berkeley, CA 94720 USA
[9] Ikerbasque, Basque Fdn Sci, E-48013 Bilbao, Spain
[10] Univ Antonio Narino, Ctr Invest Ciencias Basicas & Aplicadas, Sede Circunvalar, Carretera 3 Este 47 A-15, Bogota, Colombia
[11] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA
[12] Lab Subterraneo Canfranc, Paseo Ayerbe S-N, E-22880 Canfranc Estacion, Spain
[13] Univ Coimbra, Phys Dept, LIBPhys, Rua Larga, P-3004516 Coimbra, Portugal
[14] Univ Coimbra, Dept Phys, LIP, P-3004516 Coimbra, Portugal
[15] Texas A&M Univ, Dept Phys & Astron, College Stn, TX 77843 USA
[16] Donostia Int Phys Ctr DIPC, Paseo Manuel Lardizabal 4, E-20018 Donostia San Sebastian, Spain
[17] Univ Girona, Escola Politecn Super, Av Montilivi S-N, E-17071 Girona, Spain
[18] Univ Autonoma Madrid, Dept Fis Teor, Campus Cantoblanco, E-28049 Madrid, Spain
[19] CSIC, Inst Fis Corpuscular IFIC, Calle Catedrat Jose Beltran 2, E-46980 Paterna, Spain
[20] Univ Valencia, Calle Catedrat Jose Beltran 2, E-46980 Paterna, Spain
[21] Pacific Northwest Natl Lab, Richland, WA 99352 USA
[22] Univ Santiago de Compostela, Inst Gallego Fis Altas Energias, Campus Sur,Rua Xose Maria Suarez Nunez S-N, E-15782 Santiago De Compostela, Spain
[23] Univ Politecn Valencia, Ctr Mixto, CSIC, Inst Instrumentac Imagen Mol I3M, Camino Vera S-N, E-46022 Valencia, Spain
[24] Univ Zaragoza, Ctr Astroparticulas & Fis Altas Energias CAPA, Calle Pedro Cerbuna 12, E-50009 Zaragoza, Spain
[25] Weizmann Inst Sci, Rehovot, Israel
[26] Univ Texas Austin, Austin, TX 78712 USA
基金
欧洲研究理事会;
关键词
Dark Matter and Double Beta Decay (experiments);
D O I
10.1007/JHEP01(2021)189
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
Convolutional neural networks (CNNs) are widely used state-of-the-art computer vision tools that are becoming increasingly popular in high-energy physics. In this paper, we attempt to understand the potential of CNNs for event classification in the NEXT experiment, which will search for neutrinoless double-beta decay in Xe-136. To do so, we demonstrate the usage of CNNs for the identification of electron-positron pair production events, which exhibit a topology similar to that of a neutrinoless double-beta decay event. These events were produced in the NEXT-White high-pressure xenon TPC using 2.6 MeV gamma rays from a Th-228 calibration source. We train a network on Monte Carlo-simulated events and show that, by applying on-the-fly data augmentation, the network can be made robust against differences between simulation and data. The use of CNNs offers significant improvement in signal efficiency and background rejection when compared to previous non-CNN-based analyses.
引用
收藏
页数:22
相关论文
共 50 条
  • [41] Gender and Smile Classification using Deep Convolutional Neural Networks
    Zhang, Kaipeng
    Tan, Lianzhi
    Li, Zhifeng
    Qiao, Yu
    PROCEEDINGS OF 29TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS, (CVPRW 2016), 2016, : 739 - 743
  • [42] Neonatal Seizure Detection Using Deep Convolutional Neural Networks
    Ansari, Amir H.
    Cherian, Perumpillichira J.
    Caicedo, Alexander
    Naulaers, Gunnar
    De Vos, Maarten
    Van Huffel, Sabine
    INTERNATIONAL JOURNAL OF NEURAL SYSTEMS, 2019, 29 (04)
  • [43] Deep Learning in Liver Biopsies using Convolutional Neural Networks
    Arjmand, Alexandros
    Angelis, Constantinos T.
    Tzallas, Alexandros T.
    Tsipouras, Markos G.
    Glavas, Evripidis
    Forlano, Roberta
    Manousou, Pinelopi
    Giannakeas, Nikolaos
    2019 42ND INTERNATIONAL CONFERENCE ON TELECOMMUNICATIONS AND SIGNAL PROCESSING (TSP), 2019, : 496 - 499
  • [44] Brain tumor classification using deep convolutional neural networks
    Nurtay, M.
    Kissina, M.
    Tau, A.
    Akhmetov, A.
    Alina, G.
    Mutovina, N.
    COMPUTER OPTICS, 2025, 49 (02) : 253 - 262
  • [45] Music instrument recognition using deep convolutional neural networks
    Solanki A.
    Pandey S.
    International Journal of Information Technology, 2022, 14 (3) : 1659 - 1668
  • [46] Improved Glioma Grading Using Deep Convolutional Neural Networks
    Gutta, S.
    Acharya, J.
    Shiroishi, M. S.
    Hwang, D.
    Nayak, K. S.
    AMERICAN JOURNAL OF NEURORADIOLOGY, 2021, 42 (02) : 233 - 239
  • [47] Sign Language Translation Using Deep Convolutional Neural Networks
    Abiyev, Rahib H.
    Arslan, Murat
    Idok, John Bush
    KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS, 2020, 14 (02) : 631 - 653
  • [48] Fast Depth Reconstruction Using Deep Convolutional Neural Networks
    Maslov, Dmitrii
    Makarov, Ilya
    ADVANCES IN COMPUTATIONAL INTELLIGENCE, IWANN 2021, PT I, 2021, 12861 : 456 - 467
  • [49] Railway Joint Detection Using Deep Convolutional Neural Networks
    Sun, Yanmin
    Liu, Yan
    Yang, Chunsheng
    2019 IEEE 15TH INTERNATIONAL CONFERENCE ON AUTOMATION SCIENCE AND ENGINEERING (CASE), 2019, : 235 - 240
  • [50] Melanoma Cancer Classification using Deep Convolutional Neural Networks
    Cadena, Jose M.
    Perez, Noel
    Benitez, Diego
    Grijalva, Felipe
    Flores, Ricardo
    Camacho, Oscar
    Marrero-Ponce, Yovani
    2023 IEEE 13TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION SYSTEMS, ICPRS, 2023,