Periodic homogenization with an interface: The one-dimensional case

被引:5
|
作者
Hairer, Martin [1 ]
Manson, Charles [2 ]
机构
[1] NYU, Courant Inst, New York, NY 10003 USA
[2] Univ Warwick, Dept Math, Coventry CV4 7AL, W Midlands, England
基金
英国工程与自然科学研究理事会;
关键词
Homogenization; Interface; Skew Brownian motion; Martingale problem; NESTED FRACTALS; DIFFUSION;
D O I
10.1016/j.spa.2010.03.016
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider a one-dimensional diffusion process with coefficients that are periodic outside of a finite Interface region'. The question investigated in this article is the limiting long time/large scale behaviour of such a process under diffusive rescaling. Our main result is that it converges weakly to a rescaled version of skew Brownian motion, with parameters that can be given explicitly in terms of the coefficients of the original diffusion. Our method of proof relies on the framework provided by Freidlin and Wentzell (1993) [6] for diffusion processes on a graph in order to identify the generator of the limiting process. The graph in question consists of one vertex representing the interface region and two infinite segments corresponding to the regions on either side. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:1589 / 1605
页数:17
相关论文
共 50 条
  • [31] The multipliers of periodic points in one-dimensional dynamics
    Martens, M
    de Melo, W
    NONLINEARITY, 1999, 12 (02) : 217 - 227
  • [32] PHENOMENOLOGY OF PERIODIC WINDOWS IN ONE-DIMENSIONAL MAPS
    DEDEUS, JD
    DILAO, R
    DACOSTA, AN
    EUROPHYSICS LETTERS, 1989, 9 (04): : 303 - 308
  • [33] GAPS OF ONE-DIMENSIONAL PERIODIC AKNS SYSTEMS
    GREBERT, B
    GUILLOT, JC
    FORUM MATHEMATICUM, 1993, 5 (05) : 459 - 504
  • [34] Conductivity of one-dimensional semiconductor with periodic potential
    S. D. Beneslavskii
    A. A. Elistratov
    S. V. Shibkov
    Semiconductors, 2003, 37 : 329 - 335
  • [35] One-Dimensional Systems Without Periodic Points
    Naghmouchi, Issam
    Rezgui, Houssem Eddine
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2023, 33 (13):
  • [36] Surface phonons in one-dimensional periodic superlattices
    Aono, T
    Tanaka, Y
    Tamura, S
    PHYSICA B-CONDENSED MATTER, 1999, 263 : 98 - 101
  • [37] THE TILING SEMIGROUPS OF ONE-DIMENSIONAL PERIODIC TILINGS
    Dombi, E. R.
    Gilbert, N. D.
    JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2009, 87 (02) : 153 - 160
  • [38] SIMPLE RESULTS FOR ONE-DIMENSIONAL PERIODIC POTENTIALS
    PACHECO, M
    CLARO, F
    PHYSICA STATUS SOLIDI B-BASIC RESEARCH, 1982, 114 (02): : 399 - 403
  • [39] NONADIABATIC TRANSITIONS IN ONE-DIMENSIONAL PERIODIC SYSTEMS
    MEDVEDEV, ES
    OSHEROV, VI
    SOVIET PHYSICS SOLID STATE,USSR, 1969, 10 (08): : 1968 - &
  • [40] Linking in Systems with One-Dimensional Periodic Boundaries
    Millett, Kenneth C.
    Panagiotou, Eleni
    ALGEBRAIC MODELING OF TOPOLOGICAL AND COMPUTATIONAL STRUCTURES AND APPLICATIONS, 2017, 219 : 237 - 257