A Stochastic Computational Multi-Layer Perceptron with Backward Propagation

被引:66
|
作者
Liu, Yidong [1 ]
Liu, Siting [1 ]
Wang, Yanzhi [2 ]
Lombardi, Fabrizio [3 ]
Han, Jie [1 ]
机构
[1] Univ Alberta, Dept Elect & Comp Engn, Edmonton, AB T6G 1H9, Canada
[2] Syracuse Univ, Elect Engn & Comp Sci Dept, Syracuse, NY 13244 USA
[3] Northeastern Univ, Dept Elect & Comp Engn, Boston, MA 02115 USA
基金
加拿大自然科学与工程研究理事会;
关键词
Stochastic computation; binary search; neural network; probability estimator; multi-layer perceptron; HARDWARE IMPLEMENTATION; NEURAL-NETWORK;
D O I
10.1109/TC.2018.2817237
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Stochastic computation has recently been proposed for implementing artificial neural networks with reduced hardware and power consumption, but at a decreased accuracy and processing speed. Most existing implementations are based on pre-training such that the weights are predetermined for neurons at different layers, thus these implementations lack the ability to update the values of the network parameters. In this paper, a stochastic computational multi-layer perceptron (SC-MLP) is proposed by implementing the backward propagation algorithm for updating the layer weights. Using extended stochastic logic (ESL), a reconfigurable stochastic computational activation unit (SCAU) is designed to implement different types of activation functions such as the tanh and the rectifier function. A triple modular redundancy (TMR) technique is employed for reducing the random fluctuations in stochastic computation. A probability estimator (PE) and a divider based on the TMR and a binary search algorithm are further proposed with progressive precision for reducing the required stochastic sequence length. Therefore, the latency and energy consumption of the SC-MLP are significantly reduced. The simulation results show that the proposed design is capable of implementing both the training and inference processes. For the classification of nonlinearly separable patterns, at a slight loss of accuracy by 1.32-1.34 percent, the proposed design requires only 28.5-30.1 percent of the area and 18.9-23.9 percent of the energy consumption incurred by a design using floating point arithmetic. Compared to a fixed-point implementation, the SC-MLP consumes a smaller area (40.7-45.5 percent) and a lower energy consumption (38.0-51.0 percent) with a similar processing speed and a slight drop of accuracy by 0.15-0.33 percent. The area and the energy consumption of the proposed design is from 80.7-87.1 percent and from 71.9-93.1 percent, respectively, of a binarized neural network (BNN), with a similar accuracy.
引用
收藏
页码:1273 / 1286
页数:14
相关论文
共 50 条
  • [21] Multiple optimal learning factors for the multi-layer perceptron
    Malalur, Sanjeev S.
    Manry, Michael T.
    Jesudhas, Praveen
    NEUROCOMPUTING, 2015, 149 : 1490 - 1501
  • [22] Battle royale optimizer for training multi-layer perceptron
    Agahian, Saeid
    Akan, Taymaz
    EVOLVING SYSTEMS, 2022, 13 (04) : 563 - 575
  • [23] Classification of Fake News Using Multi-Layer Perceptron
    Jehad, Reham
    Yousif, Suhad A.
    FOURTH INTERNATIONAL CONFERENCE OF MATHEMATICAL SCIENCES (ICMS 2020), 2021, 2334
  • [24] RECURSIVE ASSEMBLY OF MULTI-LAYER PERCEPTRON NEURAL NETWORKS
    Motato, Eliot
    Radcliffe, Clark
    7TH ANNUAL DYNAMIC SYSTEMS AND CONTROL CONFERENCE, 2014, VOL 2, 2014,
  • [25] An efficient implementation of multi-layer perceptron on mesh architecture
    Ayoubi, RA
    Bayoumi, MA
    2002 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, VOL II, PROCEEDINGS, 2002, : 109 - 112
  • [26] Training multi-layer perceptron with artificial algae algorithm
    Turkoglu, Bahaeddin
    Kaya, Ersin
    ENGINEERING SCIENCE AND TECHNOLOGY-AN INTERNATIONAL JOURNAL-JESTECH, 2020, 23 (06): : 1342 - 1350
  • [27] A Study on Single and Multi-layer Perceptron Neural Network
    Singh, Jaswinder
    Banerjee, Rajdeep
    PROCEEDINGS OF THE 2019 3RD INTERNATIONAL CONFERENCE ON COMPUTING METHODOLOGIES AND COMMUNICATION (ICCMC 2019), 2019, : 35 - 40
  • [28] Seismic data denoising based on multi-layer perceptron
    Wang Q.
    Tang J.
    Zhang L.
    Liu X.
    Xu Z.
    Shiyou Diqiu Wuli Kantan/Oil Geophysical Prospecting, 2020, 55 (02): : 272 - 281
  • [29] Fuzzy multi-layer perceptron for binary pattern recognition
    Canuto, AMP
    Howells, WGJ
    Fairhurst, MC
    SEVENTH INTERNATIONAL CONFERENCE ON IMAGE PROCESSING AND ITS APPLICATIONS, 1999, (465): : 260 - 264
  • [30] Multi-layer Perceptron Based Video Surveillance System
    Harihar, Vijai Kumar
    Sukumaran, Sandeep
    Sirajuddin, Samar
    Sali, Aswathy
    2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND COMPUTING RESEARCH (ICCIC), 2017, : 490 - 495