Feature encoding for unsupervised segmentation of color images

被引:12
|
作者
Li, N [1 ]
Li, YF
机构
[1] Nanjing Univ Aeronaut & Astronaut, Dept Elect Engn, Nanjing 210016, Peoples R China
[2] City Univ Hong Kong, Dept Mfg Engn & Engn Management, Kowloon, Hong Kong, Peoples R China
关键词
automatic feature selection; color spaces; clustering; unsupervised segmentation;
D O I
10.1109/TSMCB.2003.811120
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, an unsupervised segmentation method using clustering is presented tor color images. We propose to use a neural network based approach to automatic feature selection to achieve adaptive segmentation of color images. With a. self-organizing feature map (SOFM), multiple color features can be analyzed, and the useful feature sequence (feature vector) can then be determined.. The encoded feature vector is used in the final segmentation using fuzzy clustering. The proposed method has been applied in segmenting different types of color images, and the experimental results show that it outperforms the classical clustering method. Our study shows that the feature encoding approach offers great promise in automating and optimizing the segmentation of color images.
引用
收藏
页码:438 / 447
页数:10
相关论文
共 50 条
  • [41] Geometric Encoding of Color Images
    Nosovskii, G. V.
    MOSCOW UNIVERSITY MATHEMATICS BULLETIN, 2018, 73 (01) : 1 - 8
  • [42] UNSUPERVISED BITSTREAM BASED SEGMENTATION OF IMAGES
    Mecimore, Ivan
    Creusere, Charles D.
    2009 IEEE 13TH DIGITAL SIGNAL PROCESSING WORKSHOP & 5TH IEEE PROCESSING EDUCATION WORKSHOP, VOLS 1 AND 2, PROCEEDINGS, 2009, : 643 - 647
  • [43] Unsupervised segmentation applied on sonar images
    Mignotte, M
    Collet, C
    Pérez, P
    Bouthemy, P
    ENERGY MINIMIZATION METHODS IN COMPUTER VISION AND PATTERN RECOGNITION, PROCEEDINGS, 1997, 1223 : 491 - 506
  • [44] Unsupervised segmentation algorithm of HRTEM images
    Mendizábal, A
    Cabrera, J
    Salgado, L
    Garcia, N
    González, JC
    ICIP: 2004 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOLS 1- 5, 2004, : 2757 - 2760
  • [45] Unsupervised Markovian segmentation of sonar images
    Mignotte, M
    Collet, C
    Perez, P
    Bouthemy, P
    1997 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS I - V: VOL I: PLENARY, EXPERT SUMMARIES, SPECIAL, AUDIO, UNDERWATER ACOUSTICS, VLSI; VOL II: SPEECH PROCESSING; VOL III: SPEECH PROCESSING, DIGITAL SIGNAL PROCESSING; VOL IV: MULTIDIMENSIONAL SIGNAL PROCESSING, NEURAL NETWORKS - VOL V: STATISTICAL SIGNAL AND ARRAY PROCESSING, APPLICATIONS, 1997, : 2781 - 2784
  • [46] Unsupervised segmentation for digital dermoscopic images
    Mollersen, Kajsa
    Kirchesch, Herbert M.
    Schopf, Thomas G.
    Godtliebsen, Fred
    SKIN RESEARCH AND TECHNOLOGY, 2010, 16 (04) : 401 - 407
  • [47] Unsupervised segmentation of subsurface radar images
    Al-Nuaimy, W
    Huang, Y
    Shihab, S
    Eriksen, A
    GPR 2002: NINTH INTERNATIONAL CONFERENCE ON GROUND PENETRATING RADAR, 2002, 4758 : 635 - 638
  • [48] Unsupervised color image segmentation with color-alone feature using region growing pulse coupled neural network
    Xu, Guangzhu
    Li, Xinyu
    Lei, Bangjun
    Lv, Ke
    NEUROCOMPUTING, 2018, 306 : 1 - 16
  • [49] Unsupervised perceptual segmentation of natural color images using fuzzy-based hierarchical algorithm
    Maeda, Junji
    Kawano, Akimitsu
    Saga, Sato
    Suzuki, Yukinori
    IMAGE ANALYSIS, PROCEEDINGS, 2007, 4522 : 462 - +
  • [50] An Unsupervised Stochastic Model for Detection and Identification of Objects in Textured Color Images Using Segmentation Technique
    Islam, Mofakharul
    Watters, Paul A.
    TECHNOLOGICAL DEVELOPMENTS IN NETWORKING, EDUCATION AND AUTOMATION, 2010, : 315 - 320