Part geometry and conduction-based laser power control for powder bed fusion additive manufacturing

被引:78
|
作者
Yeung, Ho [1 ]
Lane, Brandon [1 ]
Fox, Jason [1 ]
机构
[1] NIST, Gaithersburg, MD 20899 USA
关键词
Additive manufacturing; Scan strategies; Laser power control; Overhanging structures; SITE-SPECIFIC CONTROL; OVERHANGING STRUCTURES; THERMAL-CONDUCTIVITY; SCAN STRATEGY; DESIGN; MICROSTRUCTURE; COMPONENTS; ROUGHNESS; ALUMINUM; ALLOYS;
D O I
10.1016/j.addma.2019.100844
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Laser powder bed fusion (LPBF) uses a focused, high power laser to repeatedly scan geometric patterns on thin layers of metal powder, which build up to a final, solid three-dimensional (3D) part. This process is somewhat limited in that the parts tend to have poorer surface finish (compared to machining or grinding) and distortion due to residual stress, as well as multiple other deficiencies. Typical laser scan strategies are relatively simple and use constant laser power levels. This elicits local variations in the melt pool size, shape, or temperature, particularly near sharp geometric features or overhang structures due to the relatively higher thermal conductivity of solid metal compared to metal powder. In this paper, we present a new laser power control algorithm, which scales the laser power to a value called the geometric conductance factor (GCF). The GCF is calculated based on the amount of solid vs. powder material near the melt pool. The algorithm for calculating GCF is presented along with some basic examples for clarification. Then, we detail the hardware and software implementation on the National Institute of Standards and Technology (NIST) additive manufacturing metrology testbed (AMMT), which includes co-axial melt pool monitoring using a high-speed camera. Six parts were fabricated out of nickel superalloy 625 (IN625) with the same nominal laser power, but with varying GCF algorithm parameters. We demonstrate the effect of tailored laser power on reducing the variability of melt pool intensity measured throughout the 3D build. Finally, we contrast the difference between the 'optimized' part vs. the standard build parameters, including the deflection of the final part top surface near the overhang and the variation of surface finish on the down-facing surfaces. Ultimately, the improvements to the in-situ process monitoring and part qualities demonstrate the utility and future potential tuning and optimizing more complex laser scan strategies.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] An investigation into specimen property to part performance relationships for laser beam powder bed fusion additive manufacturing
    Shrestha, Rakish
    Shamsaei, Nima
    Seifi, Mohsen
    Nam Phan
    ADDITIVE MANUFACTURING, 2019, 29
  • [22] Is high-speed powder spreading really unfavourable for the part quality of laser powder bed fusion additive manufacturing?
    Chen, Hui
    Cheng, Tan
    Li, Zhongwei
    Wei, Qingsong
    Yan, Wentao
    ACTA MATERIALIA, 2022, 231
  • [23] Influences of Powder Packing Density in Laser Powder Bed Fusion Metal Additive Manufacturing
    Zhang Peng
    Zhang Shaoming
    Bi Zhongnan
    Tan Zhen
    Wang Rui
    Wang Rui
    LASER & OPTOELECTRONICS PROGRESS, 2024, 61 (05)
  • [24] On the effect of shielding gas flow on porosity and melt pool geometry in laser powder bed fusion additive manufacturing
    Reijonen, Joni
    Revuelta, Alejandro
    Riipinen, Tuomas
    Ruusuvuori, Kimmo
    Puukko, Pasi
    ADDITIVE MANUFACTURING, 2020, 32
  • [25] Microstructural control in metal laser powder bed fusion additive manufacturing using laser beam shaping strategy
    Shi, Rongpei
    Khairallah, Saad A.
    Roehling, Tien T.
    Heo, Tae Wook
    McKeown, Joseph T.
    Matthews, Manyalibo J.
    ACTA MATERIALIA, 2020, 184 (284-305) : 284 - 305
  • [26] Manufacturability analysis of metal laser-based powder bed fusion additive manufacturing—a survey
    Ying Zhang
    Sheng Yang
    Yaoyao Fiona Zhao
    The International Journal of Advanced Manufacturing Technology, 2020, 110 : 57 - 78
  • [27] Production Tools Made by Additive Manufacturing Through Laser-based Powder Bed Fusion
    Asnafi, Nader
    Rajalampi, Jukka
    Aspenberg, David
    Alveflo, Anton
    BHM Berg- und Huttenmannische Monatshefte, 2020, 165 (03): : 125 - 136
  • [28] Fatigue-based process window for laser beam powder bed fusion additive manufacturing
    Reddy, Tharun
    Ngo, Austin
    Miner, Justin P.
    Gobert, Christian
    Beuth, Jack L.
    Rollett, Anthony D.
    Lewandowski, John J.
    Narra, Sneha P.
    INTERNATIONAL JOURNAL OF FATIGUE, 2024, 187
  • [29] Alloy design for laser powder bed fusion additive manufacturing: a critical review
    Liu, Zhuangzhuang
    Zhou, Qihang
    Liang, Xiaokang
    Wang, Xiebin
    Li, Guichuan
    Vanmeensel, Kim
    Xie, Jianxin
    INTERNATIONAL JOURNAL OF EXTREME MANUFACTURING, 2024, 6 (02)
  • [30] Development of Micro Laser Powder Bed Fusion for Additive Manufacturing of Inconel 718
    Khademzadeh, Saeed
    Gennari, Claudio
    Zanovello, Andrea
    Franceschi, Mattia
    Campagnolo, Alberto
    Brunelli, Katya
    MATERIALS, 2022, 15 (15)