Thermoelectricity in Heterogeneous Nanofluidic Channels

被引:22
|
作者
Li, Long [1 ,2 ]
Wang, Qinggong [1 ]
机构
[1] Q Xuesen Lab Space Technol, 104 Youyi Rd, Beijing 100094, Peoples R China
[2] Hong Kong Univ Sci & Technol, Dept Mech & Aerosp Engn, Kowloon 999077, Hong Kong, Peoples R China
关键词
heterogeneous nanochannels; nanofluidics; Poisson-Boltzmann; slip flow; thermoelectricity; MOLECULAR-DYNAMICS; TRANSPORT; ENERGY; POWER; HEAT; ELECTROLYTES; DIFFUSION; GRADIENT; COLD; FLOW;
D O I
10.1002/smll.201800369
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Ionic fluids are essential to energy conversion, water desalination, drug delivery, and lab-on-a-chip devices. Ionic transport in nanoscale confinements and complex physical fields still remain elusive. Here, a nanofluidic system is developed using nanochannels of heterogeneous surface properties to investigate transport properties of ions under different temperatures. Steady ionic currents are observed under symmetric temperature gradients, which is equivalent to generating electricity using waste heat (e.g., electronic chips and solar panels). The currents increase linearly with temperature gradient and nonlinearly with channel size. Contributions to ion motion from temperatures and channel properties are evaluated for this phenomenon. The findings provide insights into the study of confined ionic fluids in multiphysical fields, and suggest applications in thermal energy conversion, temperature sensors, and chip-level thermal management.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] Electrokinetic Concentration of DNA Polymers in Nanofluidic Channels
    Stein, Derek
    Deurvorst, Zeno
    van der Heyden, Frank H. J.
    Koopmans, Wiepke J. A.
    Gabel, Alan
    Dekker, Cees
    NANO LETTERS, 2010, 10 (03) : 765 - 772
  • [22] Evaporation-induced cavitation in nanofluidic channels
    Duan, Chuanhua
    Karnik, Rohit
    Lu, Ming-Chang
    Majumdar, Arun
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2012, 109 (10) : 3688 - 3693
  • [23] Numerical modeling of photothermal effect in nanofluidic channels
    Hisashi Shimizu
    Takehiko Kitamori
    Microfluidics and Nanofluidics, 2021, 25
  • [24] Electrokinetic characterization of individual nanoparticles in nanofluidic channels
    Thomas M. Wynne
    Alexander H. Dixon
    Sumita Pennathur
    Microfluidics and Nanofluidics, 2012, 12 : 411 - 421
  • [25] Attoliter-scale dispensing in nanofluidic channels
    Kovarik, Michelle L.
    Jacobson, Stephen C.
    ANALYTICAL CHEMISTRY, 2007, 79 (04) : 1655 - 1660
  • [26] Electrokinetic energy conversion efficiency in nanofluidic channels
    van der Heyden, Frank H. J.
    Bonthuis, Douwe Jan
    Stein, Derek
    Meyer, Christine
    Dekker, Cees
    NANO LETTERS, 2006, 6 (10) : 2232 - 2237
  • [27] Electrokinetic characterization of individual nanoparticles in nanofluidic channels
    Wynne, Thomas M.
    Dixon, Alexander H.
    Pennathur, Sumita
    MICROFLUIDICS AND NANOFLUIDICS, 2012, 12 (1-4) : 411 - 421
  • [28] Modeling of electrokinetic transport in silica nanofluidic channels
    Wang, Moran
    Kang, Qinjun
    Ben-Naim, Eli
    ANALYTICA CHIMICA ACTA, 2010, 664 (02) : 158 - 164
  • [29] Nanofluidic channels fabrication and manipulation of DNA molecules
    Wang, K.
    Yue, S.
    Wang, L.
    Jin, A.
    Gu, C.
    Wang, P.
    Wang, H.
    Xu, X.
    Wang, Y.
    Niu, H.
    IEE PROCEEDINGS-NANOBIOTECHNOLOGY, 2006, 153 (01): : 11 - 15
  • [30] DNA linearization through confinement in nanofluidic channels
    Douville, Nicholas
    Huh, Dongeun
    Takayama, Shuichi
    ANALYTICAL AND BIOANALYTICAL CHEMISTRY, 2008, 391 (07) : 2395 - 2409