Thermoelectricity in Heterogeneous Nanofluidic Channels

被引:22
|
作者
Li, Long [1 ,2 ]
Wang, Qinggong [1 ]
机构
[1] Q Xuesen Lab Space Technol, 104 Youyi Rd, Beijing 100094, Peoples R China
[2] Hong Kong Univ Sci & Technol, Dept Mech & Aerosp Engn, Kowloon 999077, Hong Kong, Peoples R China
关键词
heterogeneous nanochannels; nanofluidics; Poisson-Boltzmann; slip flow; thermoelectricity; MOLECULAR-DYNAMICS; TRANSPORT; ENERGY; POWER; HEAT; ELECTROLYTES; DIFFUSION; GRADIENT; COLD; FLOW;
D O I
10.1002/smll.201800369
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Ionic fluids are essential to energy conversion, water desalination, drug delivery, and lab-on-a-chip devices. Ionic transport in nanoscale confinements and complex physical fields still remain elusive. Here, a nanofluidic system is developed using nanochannels of heterogeneous surface properties to investigate transport properties of ions under different temperatures. Steady ionic currents are observed under symmetric temperature gradients, which is equivalent to generating electricity using waste heat (e.g., electronic chips and solar panels). The currents increase linearly with temperature gradient and nonlinearly with channel size. Contributions to ion motion from temperatures and channel properties are evaluated for this phenomenon. The findings provide insights into the study of confined ionic fluids in multiphysical fields, and suggest applications in thermal energy conversion, temperature sensors, and chip-level thermal management.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Electroviscous effects in nanofluidic channels
    Wang, Moran
    Chang, Chi-Chang
    Yang, Ruey-Jen
    JOURNAL OF CHEMICAL PHYSICS, 2010, 132 (02):
  • [2] Capillary Electrophoresis in Nanofluidic Channels
    Atzberger, Paul J.
    Gibou, Frederic
    Pennathur, Sumita
    NANOTECHNOLOGY 2011: ELECTRONICS, DEVICES, FABRICATION, MEMS, FLUIDICS AND COMPUTATIONAL, NSTI-NANOTECH 2011, VOL 2, 2011, : 454 - 457
  • [3] Ion transport in nanofluidic channels
    Daiguji, Hirofumi
    CHEMICAL SOCIETY REVIEWS, 2010, 39 (03) : 901 - 911
  • [4] Scrolling graphene into nanofluidic channels
    Mirsaidov, Utkur
    Mokkapati, V. R. S. S.
    Bhattacharya, Dipanjan
    Andersen, Henrik
    Bosman, Michel
    Oezyilmaz, Barbaros
    Matsudaira, Paul
    LAB ON A CHIP, 2013, 13 (15) : 2874 - 2878
  • [5] Electroosmotic Flow in Nanofluidic Channels
    Haywood, Daniel G.
    Harms, Zachary D.
    Jacobson, Stephen C.
    ANALYTICAL CHEMISTRY, 2014, 86 (22) : 11174 - 11180
  • [6] Ion transport in nanofluidic channels
    Daiguji, H
    Yang, PD
    Majumdar, A
    NANO LETTERS, 2004, 4 (01) : 137 - 142
  • [7] Ion transport in graphene nanofluidic channels
    Xie, Quan
    Xin, Fang
    Park, Hyung Gyu
    Duan, Chuanhua
    NANOSCALE, 2016, 8 (47) : 19527 - 19535
  • [8] Electrochemomechanical energy conversion in nanofluidic channels
    Daiguji, H
    Yang, PD
    Szeri, AJ
    Majumdar, A
    NANO LETTERS, 2004, 4 (12) : 2315 - 2321
  • [9] AMPEROMETRIC DETECTION OF PYOCYANIN IN NANOFLUIDIC CHANNELS
    Webster, Thaddaeus A.
    Sismaet, Hunter J.
    Goluch, Edgar D.
    NANO LIFE, 2013, 3 (01)
  • [10] Manipulating DNA molecules in nanofluidic channels
    Kai-Ge Wang
    Shuanglin Yue
    Lei Wang
    Aizi Jin
    Changzhi Gu
    Peng-Ye Wang
    Yuchun Feng
    Yuncheng Wang
    Hanben Niu
    Microfluidics and Nanofluidics, 2006, 2 : 85 - 88