N-sided radial Schramm-Loewner evolution

被引:5
|
作者
Healey, Vivian Olsiewski [1 ,2 ]
Lawler, Gregory F. [2 ]
机构
[1] Univ Chicago, Chicago, IL 60637 USA
[2] Texas State Univ, Dept Math, San Marcos, TX 78666 USA
关键词
60J67 Stochastic (Schramm-) Loewner Evolution; ERASED RANDOM-WALKS;
D O I
10.1007/s00440-021-01033-9
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We use the interpretation of the Schramm-Loewner evolution as a limit of path measures tilted by a loop term in order to motivate the definition of n-radial SLE going to a particular point. In order to justify the definition we prove that the measure obtained by an appropriately normalized loop term on n-tuples of paths has a limit. The limit measure can be described as n paths moving by the Loewner equation with a driving term of Dyson Brownian motion. While the limit process has been considered before, this paper shows why it naturally arises as a limit of configurational measures obtained from loop measures.
引用
收藏
页码:451 / 488
页数:38
相关论文
共 50 条
  • [1] N-sided radial Schramm–Loewner evolution
    Vivian Olsiewski Healey
    Gregory F. Lawler
    Probability Theory and Related Fields, 2021, 181 : 451 - 488
  • [2] The Green function for the radial Schramm-Loewner evolution
    Alberts, Tom
    Kozdron, Michael J.
    Lawler, Gregory F.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2012, 45 (49)
  • [3] Oded Schramm and the Schramm-Loewner evolution: In memoriam
    Bharali, Gautam
    Ramadas, T. R.
    CURRENT SCIENCE, 2009, 96 (02): : 297 - 298
  • [4] Watersheds are Schramm-Loewner Evolution Curves
    Daryaei, E.
    Araujo, N. A. M.
    Schrenk, K. J.
    Rouhani, S.
    Herrmann, H. J.
    PHYSICAL REVIEW LETTERS, 2012, 109 (21)
  • [5] Numerical Computations for the Schramm-Loewner Evolution
    Tom Kennedy
    Journal of Statistical Physics, 2009, 137 : 839 - 856
  • [6] Scaling limits and the Schramm-Loewner evolution
    Lawler, Gregory F.
    PROBABILITY SURVEYS, 2011, 8 : 442 - 495
  • [7] A NATURAL PARAMETRIZATION FOR THE SCHRAMM-LOEWNER EVOLUTION
    Lawler, Gregory F.
    Sheffield, Scott
    ANNALS OF PROBABILITY, 2011, 39 (05): : 1896 - 1937
  • [8] Coastlines violate the Schramm-Loewner Evolution
    Abril, Leidy M. L.
    Oliveira, Erneson A.
    Moreira, Andre A.
    Andrade Jr, Jose S.
    Herrmann, Hans J.
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2024, 653
  • [10] Shortest path and Schramm-Loewner Evolution
    N. Posé
    K. J. Schrenk
    N. A. M. Araújo
    H. J. Herrmann
    Scientific Reports, 4