Wheel flat detection and severity classification using deep learning techniques

被引:13
|
作者
Sresakoolchai, J. [1 ]
Kaewunruen, S. [1 ]
机构
[1] Univ Birmingham, Sch Engn, Birmingham B15 2TT, W Midlands, England
关键词
wheel flat detection; wheel flat severity classification; machine learning; deep learning; convolutional neural network; recurrent neural network; RAILWAY TRACK;
D O I
10.1784/insi.2021.63.7.393
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
Wheel flats are one of the most common types of defect found in railway systems. Wheel flats can result in decreasing passenger comfort and noise if they are slight, or serious incidents such as derailment if they are severe. With the increasing demand for railway transport, the speed and weight of rolling stock tend to increase, which results in relatively rapid deterioration. The occurrence of wheel flats is also affected by this increasing demand. To perform preventative maintenance for wheel flats, to keep wheelsets in a proper condition and to minimise maintenance costs, the ability to detect and classify wheel flats is required. This study aims to apply deep learning techniques to detect wheel flats and classify wheel flat severity. The deep learning techniques used in the study are a deep neural network (DNN), a convolutional neural network (CNN) and a recurrent neural network (RNN). 1608 samples, simulated using D-Track, a dynamic behaviour simulation software package, are used to develop machine learning models. Three different aspects of the models are evaluated, namely overall accuracy, the ability to detect wheel flats and the ability to classify wheel flat severity. The results from the study show the DNN has the highest overall accuracy of 96%. In addition, the DNN can be used to detect wheel flats with nearly 100% accuracy. The CNN performs better than the RNN in terms of overall accuracy and wheel flat detection. However, the RNN performs better than the CNN in wheel flat severity classification. Overall, the DNN offers the best approach for detecting wheel flats and classifying their severity.
引用
收藏
页码:393 / 402
页数:10
相关论文
共 50 条
  • [31] Automated Dysarthria Severity Classification: A Study on Acoustic Features and Deep Learning Techniques
    Joshy, Amlu Anna
    Rajan, Rajeev
    IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 2022, 30 : 1147 - 1157
  • [32] Classification of diabetic retinopathy severity level using deep learning
    Durairaj, Santhi
    Subramanian, Parvathi
    Swamy, Carmel Sobia Micheal
    INTERNATIONAL JOURNAL OF DIABETES IN DEVELOPING COUNTRIES, 2024, 44 (03) : 592 - 598
  • [33] Automated Dysarthria Severity Classification Using Deep Learning Frameworks
    Joshy, Amlu Anna
    Rajan, Rajeev
    28TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO 2020), 2021, : 116 - 120
  • [34] Defect Classification Using Machine Learning Techniques for Flat Display Panels
    Cho, Du-Hyung
    Lee, Seok-Lyong
    MACHINE DESIGN AND MANUFACTURING ENGINEERING II, PTS 1 AND 2, 2013, 365-366 : 720 - 724
  • [35] Intrusion Detection Using Machine Learning and Deep Learning Techniques
    Calisir, Sinan
    Atay, Remzi
    Pehlivanoglu, Meltem Kurt
    Duru, Nevcihan
    2019 4TH INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND ENGINEERING (UBMK), 2019, : 656 - 660
  • [36] Ransomware Detection and Classification Using Machine Learning and Deep Learning
    Ouerdi, Noura
    Mejjout, Brahim
    Laaroussi, Khadija
    Kasmi, Mohammed Amine
    ADVANCES IN SMART MEDICAL, IOT & ARTIFICIAL INTELLIGENCE, VOL 1, ICSMAI 2024, 2024, 11 : 194 - 201
  • [37] RETRACTION: Detection of Breast Cancer Using Histopathological Image Classification Dataset with Deep Learning Techniques
    Reshma, V. K.
    Arya, N.
    Ahmad, S. S.
    BIOMED RESEARCH INTERNATIONAL, 2024, 2024
  • [38] Detection and Classification of Wilting in Soybean Crop using Cutting-edge Deep Learning Techniques
    Na, Myung Hwan
    Na, In Seop
    LEGUME RESEARCH, 2024, 47 (10) : 1723 - 1729
  • [39] Cloud-Based Lung Tumor Detection and Stage Classification Using Deep Learning Techniques
    Kasinathan, Gopi
    Jayakumar, Selvakumar
    BIOMED RESEARCH INTERNATIONAL, 2022, 2022
  • [40] Revisiting "code smell severity classification using machine learning techniques"
    Hu, Wenhua
    Liu, Lei
    Yang, Peixin
    Zou, Kuan
    Li, Jiajun
    Lin, Guancheng
    Xiang, Jianwen
    2023 IEEE 47TH ANNUAL COMPUTERS, SOFTWARE, AND APPLICATIONS CONFERENCE, COMPSAC, 2023, : 840 - 849