On a subclass of analytic functions involving harmonic means

被引:3
|
作者
Tudor, Andreea-Elena [1 ]
Raducanu, Dorina [1 ]
机构
[1] Transilvania Univ Brasov, Dept Math, Brasov 500091, Romania
来源
ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA | 2015年 / 23卷 / 01期
关键词
Analytic functions; Fekete-Szego inequality; bi-univalent functions; COEFFICIENT;
D O I
10.1515/auom-2015-0018
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the present paper, we consider a generalised subclass of analytic functions involving arithmetic, geometric and harmonic means. For this function class we obtain an inclusion result, Fekete-Szego inequality and coefficient bounds for bi-univalent functions.
引用
收藏
页码:267 / 275
页数:9
相关论文
共 50 条
  • [21] On Certain Subclass of Analytic Functions
    Noor, K., I
    Khan, N.
    Ahmad, Q. Z.
    Khann, N.
    Chung, Y. L.
    ARMENIAN JOURNAL OF MATHEMATICS, 2018, 10 (11): : 1 - 15
  • [22] ON THE PROPERTIES OF A SUBCLASS OF ANALYTIC FUNCTIONS
    Raducanu, Dorina
    STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2010, 55 (03): : 187 - 195
  • [23] On a subclass of harmonic univalent functions
    Sharma, R. Bharavi
    Ravindar, B.
    PROCEEDINGS OF THE 10TH NATIONAL CONFERENCE ON MATHEMATICAL TECHNIQUES AND ITS APPLICATIONS (NCMTA 18), 2018, 1000
  • [24] On a Subclass of Analytic Functions Related with Janowski Functions
    Arif, Muhammad
    Mustafa, Saima
    Khan, Khalid
    LIFE SCIENCE JOURNAL-ACTA ZHENGZHOU UNIVERSITY OVERSEAS EDITION, 2012, 9 (04): : 3756 - 3762
  • [25] A Subclass of Analytic Functions Associated with Hypergeometric Functions
    Joshi, Santosh B.
    Pawar, Haridas H.
    Bulboaca, Teodor
    SAHAND COMMUNICATIONS IN MATHEMATICAL ANALYSIS, 2019, 14 (01): : 199 - 210
  • [26] ON CERTAIN SUBCLASS OF ANALYTIC-FUNCTIONS
    NUNOKAWA, M
    OWA, S
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 1988, 19 (01): : 51 - 54
  • [27] On a subclass of analytic functions with negative coefficients
    Orhan, H
    APPLIED MATHEMATICS AND COMPUTATION, 2003, 142 (2-3) : 243 - 253
  • [28] Regions of variability for a subclass of analytic functions
    Raza, Mohsan
    Ul Hag, Wasim
    Liu, Jin-Lin
    Noreen, Saddaf
    AIMS MATHEMATICS, 2020, 5 (04): : 3365 - 3377
  • [29] A new subclass of complex harmonic functions
    Yalçin, S
    Öztürk, M
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2004, 7 (01): : 55 - 61
  • [30] On a certain subclass of harmonic univalent functions
    Yunus, Yuzaimi
    Akbarally, Ajab Bai
    Halim, Suzeini Abdul
    14TH INTERNATIONAL SYMPOSIUM ON GEOMETRIC FUNCTION THEORY AND APPLICATIONS, 2019, 1212