Observability and Controllability of the 1-D Wave Equation in Domains with Moving Boundary

被引:11
|
作者
Sengouga, Abdelmouhcene [1 ]
机构
[1] Univ Msila, Lab Funct Anal & Geometry Spaces, Msila 28000, Algeria
关键词
Wave equation; Non-cylindrical domains; Observability; Controllability; Hilbert uniqueness method; Generalized Fourier series;
D O I
10.1007/s10440-018-0166-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
By mean of generalized Fourier series and Parseval's equality in weighted L-2-spaces, we derive a sharp energy estimate for the wave equation in a bounded interval with a moving endpoint. Then, we show the observability, in a sharp time, at each of the endpoints of the interval. The observability constants are explicitly given. Using the Hilbert Uniqueness Method we deduce the exact boundary controllability of the wave equation.
引用
收藏
页码:117 / 128
页数:12
相关论文
共 50 条
  • [31] THE KALMAN CONDITION FOR THE BOUNDARY CONTROLLABILITY OF COUPLED 1-D WAVE EQUATIONS
    Avdonin, Sergei
    Park, Jeff
    De Teresa, Luz
    EVOLUTION EQUATIONS AND CONTROL THEORY, 2020, 9 (01): : 255 - 273
  • [32] Exact boundary controllability for 1-D quasilinear wave equations with dynamical boundary conditions
    Wang, Yue
    Leugering, Guenter
    Li, Tatsien
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2017, 40 (10) : 3808 - 3820
  • [33] Observability and stabilization of the wave equation with moving boundary or pointwise feedback
    Ammari, Kais
    Bchatnia, Ahmed
    El Mufti, Karim
    IDENTIFICATION AND CONTROL: SOME NEW CHALLENGES, 2020, 757 : 91 - 107
  • [34] Boundary observability for the space-discretizations of the 1 - d wave equation
    Comptes Rendus L'Acad Sci Ser I Math, 6 (713):
  • [35] Local controllability of a 1-D Schrodinger equation
    Beauchard, K
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2005, 84 (07): : 851 - 956
  • [36] APPROXIMATE BOUNDARY CONTROLLABILITY FOR THE WAVE-EQUATION IN PERFORATED DOMAINS
    CIORANESCU, D
    DONATO, P
    ZUAZUA, E
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1994, 32 (01) : 35 - 50
  • [37] ON THE GLOBAL CONTROLLABILITY OF THE 1-D BOUSSINESQ EQUATION
    Jammazi, Chaker
    Loucif, Souhila
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2022, 15 (06): : 1499 - 1523
  • [38] On the controllability of the 1-D isentropic Euler equation
    Glass, Olivier
    JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2007, 9 (03) : 427 - 486
  • [39] Exact Controllability of the 1-D Wave Equation on Finite Metric Tree Graphs
    Avdonin, Sergei
    Zhao, Yuanyuan
    APPLIED MATHEMATICS AND OPTIMIZATION, 2021, 83 (03): : 2303 - 2326
  • [40] Exact boundary controllability of nodal profile for 1-D quasilinear wave equations
    Wang, Ke
    FRONTIERS OF MATHEMATICS IN CHINA, 2011, 6 (03) : 545 - 555