Finite rotations in dynamics of beams and implicit time-stepping schemes

被引:1
|
作者
Ibrahimbegovic, A [1 ]
Al Mikdad, M [1 ]
机构
[1] Univ Technol Compiegne, Dept Genie Syst Mecan, Div MNM,Lab G2MS, CNRS,URA 1505, F-60205 Compiegne, France
关键词
nonlinear dynamics; geometrically exact beam theory; finite rotations; Newmark scheme;
D O I
10.1002/(SICI)1097-0207(19980315)41:5<781::AID-NME308>3.0.CO;2-9
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We examine theoretical and computational aspects of three-dimensional finite rotations pertinent to the dynamics of beams. The model problem chosen for consideration is the Reissner beam theory capable of modelling finite strains and finite rotations in geometrically exact manner. Special emphasis is placed on clarifying the geometry aspects, finite rotation updates and the associated linearization procedure pertaining to different choices of rotation parameters. The latter is shown to play an important role in constructing the optimal implementation of a time-stepping scheme. (C) 1998 John Wiley & Sons, Ltd.
引用
收藏
页码:781 / 814
页数:34
相关论文
共 50 条
  • [41] Analysis of stiffness in the immersed boundary method and implications for time-stepping schemes
    Stockie, JM
    Wetton, BR
    JOURNAL OF COMPUTATIONAL PHYSICS, 1999, 154 (01) : 41 - 64
  • [42] Discrete maximal regularity of time-stepping schemes for fractional evolution equations
    Bangti Jin
    Buyang Li
    Zhi Zhou
    Numerische Mathematik, 2018, 138 : 101 - 131
  • [43] Time-stepping schemes for systems of Volterra integro-differential equations
    Patlashenko, I
    Givoli, D
    Barbone, P
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2001, 190 (43-44) : 5691 - 5718
  • [44] CONVERGENCE OF TIME-STEPPING SCHEMES FOR PASSIVE AND EXTENDED LINEAR COMPLEMENTARITY SYSTEMS
    Han, Lanshan
    Tiwari, Alok
    Camlibel, M. Kanat
    Pang, Jong-Shi
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2009, 47 (05) : 3768 - 3796
  • [45] Performance of time-stepping schemes for discrete models in fracture dynamic analysis
    Delaplace, A
    Ibrahimbegovic, A
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2006, 65 (09) : 1527 - 1544
  • [46] Rigid body time-stepping schemes in a quasi-static setting
    Gavrea, Bogdan
    STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2011, 56 (02): : 353 - 357
  • [47] Discrete maximal regularity of time-stepping schemes for fractional evolution equations
    Jin, Bangti
    Li, Buyang
    Zhou, Zhi
    NUMERISCHE MATHEMATIK, 2018, 138 (01) : 101 - 131
  • [48] Conservative explicit local time-stepping schemes for the shallow water equations
    Hoang, Thi-Thao-Phuong
    Leng, Wei
    Ju, Lili
    Wang, Zhu
    Pieper, Konstantin
    JOURNAL OF COMPUTATIONAL PHYSICS, 2019, 382 : 152 - 176
  • [49] Correction of the Approximation Error in the Time-Stepping Finite Element Method
    Kim, Byung-taek
    Yu, Byoung-hun
    Choi, Myoung-hyun
    Kim, Ho-hyun
    JOURNAL OF ELECTRICAL ENGINEERING & TECHNOLOGY, 2009, 4 (02) : 229 - 233
  • [50] Correction of the approximation error in the time-stepping finite element method
    Dept. of Electrical Engineering, Kunsan National University, Korea, Republic of
    J. Electr. Eng. Technol., 2009, 2 (229-233):