Survey sequencing and comparative analysis of the elephant shark (Callorhinchus milii) genome

被引:252
|
作者
Venkatesh, Byrappa
Kirkness, Ewen F.
Loh, Yong-Hwee
Halpern, Aaron L.
Lee, Alison P.
Johnson, Justin
Dandona, Nidhi
Viswanathan, Lakshmi D.
Tay, Alice
Venter, J. Craig
Strausberg, Robert L.
Brenner, Sydney
机构
[1] Natl Univ Singapore, Inst Mol & Cell Biol, Singapore 117548, Singapore
[2] Inst Genom Res, Rockville, MD USA
[3] J Craig Venter Inst, Rockville, MD USA
关键词
D O I
10.1371/journal.pbio.0050101
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Owing to their phylogenetic position, cartilaginous fishes (sharks, rays, skates, and chimaeras) provide a critical reference for our understanding of vertebrate genome evolution. The relatively small genome of the elephant shark, Callorhinchus milii, a chimaera, makes it an attractive model cartilaginous fish genome for whole-genome sequencing and comparative analysis. Here, the authors describe survey sequencing (1.43 x coverage) and comparative analysis of the elephant shark genome, one of the first cartilaginous fish genomes to be sequenced to this depth. Repetitive sequences, represented mainly by a novel family of short interspersed element-like and long interspersed element-like sequences, account for about 28% of the elephant shark genome. Fragments of approximately 15,000 elephant shark genes reveal specific examples of genes that have been lost differentially during the evolution of tetrapod and teleost fish lineages. Interestingly, the degree of conserved synteny and conserved sequences between the human and elephant shark genomes are higher than that between human and teleost fish genomes. Elephant shark contains putative four Hox clusters indicating that, unlike teleost fish genomes, the elephant shark genomehas not experienced an additional wholegenome duplication. These findings underscore the importance of the elephant shark as a critical reference vertebrate genome for comparative analysis of the human and other vertebrate genomes. This study also demonstrates that a survey sequencing approach can be applied productively for comparative analysis of distantly related vertebrate genomes.
引用
收藏
页码:932 / 944
页数:13
相关论文
共 50 条
  • [21] INSIGHTS ON THE EVOLUTION OF THE PELVIC GIRDLE OF EARLY GNATHOSTOMES FROM THE DEVELOPMENT OF THE ELEPHANT SHARK (CALLORHINCHUS MILII) AND PRESERVED SOFT TISSUE IN DEVONIAN PLACODERMS
    Boisvert, Catherine
    Trinajstic, Katherine
    Currie, Peter
    JOURNAL OF VERTEBRATE PALEONTOLOGY, 2011, 31 : 74 - 74
  • [22] DEVELOPMENT OF THE NEW-ZEALAND ELEPHANT FISH, CALLORHINCHUS-MILII (HOLOCEPHALI, CALLORHINCHIDAE)
    DIDIER, DA
    AMERICAN ZOOLOGIST, 1990, 30 (04): : A132 - A132
  • [23] Glial architecture of the ghost shark (Callorhinchus milii, Holocephali, Chondrichthyes) as revealed by different immunohistochemical markers
    Ari, Csilla
    Kalman, Mihaly
    JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION, 2008, 310B (06) : 504 - 519
  • [24] The dog genome: Survey sequencing and comparative analysis
    Kirkness, EF
    Bafna, V
    Halpern, AL
    Levy, S
    Remington, K
    Rusch, DB
    Delcher, AL
    Pop, M
    Wang, W
    Fraser, CM
    Venter, JC
    SCIENCE, 2003, 301 (5641) : 1898 - 1903
  • [25] Hepatic and extrahepatic distribution of ornithine urea cycle enzymes in holocephalan elephant fish (Callorhinchus milii)
    Takagi, Wataru
    Kajimura, Makiko
    Bell, Justin D.
    Toop, Tes
    Donald, John A.
    Hyodo, Susumu
    COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY B-BIOCHEMISTRY & MOLECULAR BIOLOGY, 2012, 161 (04): : 331 - 340
  • [26] Capture, Transport, and Husbandry of Elephant Sharks (Callorhinchus milii) Adults, Eggs, and Hatchlings for Research and Display
    Boisvert, Catherine A.
    Martins, Camila Leite
    Edmunds, Alison Grace
    Cocks, Julian
    Currie, Peter
    ZOO BIOLOGY, 2015, 34 (01) : 94 - 98
  • [27] Sulfate transporters involved in sulfate secretion in the kidney are localized in the renal proximal tubule II of the elephant fish (Callorhinchus milii)
    Hasegawa, Kumi
    Kato, Akira
    Watanabe, Taro
    Takagi, Wataru
    Romero, Michael F.
    Bell, Justin D.
    Toop, Tes
    Donald, John A.
    Hyodo, Susumu
    AMERICAN JOURNAL OF PHYSIOLOGY-REGULATORY INTEGRATIVE AND COMPARATIVE PHYSIOLOGY, 2016, 311 (01) : R66 - R78
  • [28] Comparative genomics approach to detecting split-coding regions in a low-coverage genome: lessons from the chimaera Callorhinchus milii (Holocephali, Chondrichthyes)
    Dessimoz, Christophe
    Zoller, Stefan
    Manousaki, Tereza
    Qiu, Huan
    Meyer, Axel
    Kuraku, Shigehiro
    BRIEFINGS IN BIOINFORMATICS, 2011, 12 (05) : 474 - 484
  • [29] Genome variations in sea cucumbers: Insights from genome survey sequencing and comparative analysis of mitochondrial genomes
    Jiang, Chunxi
    Yang, Hongsheng
    Liu, Bohong
    Sun, Lina
    COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS, 2024, 52
  • [30] Elephant shark genome provides unique insights into gnathostome evolution
    Venkatesh, Byrappa
    Lee, Alison P.
    Ravi, Vydianathan
    Maurya, Ashish K.
    Lian, Michelle M.
    Swann, Jeremy B.
    Ohta, Yuko
    Flajnik, Martin F.
    Sutoh, Yoichi
    Kasahara, Masanori
    Hoon, Shawn
    Gangu, Vamshidhar
    Roy, Scott W.
    Irimia, Manuel
    Korzh, Vladimir
    Kondrychyn, Igor
    Lim, Zhi Wei
    Tay, Boon-Hui
    Tohari, Sumanty
    Kong, Kiat Whye
    Ho, Shufen
    Lorente-Galdos, Belen
    Quilez, Javier
    Marques-Bonet, Tomas
    Raney, Brian J.
    Ingham, Philip W.
    Tay, Alice
    Hillier, LaDeana W.
    Minx, Patrick
    Boehm, Thomas
    Wilson, Richard K.
    Brenner, Sydney
    Warren, Wesley C.
    NATURE, 2014, 505 (7482) : 174 - 179