Evaluation of the MRI Images Matching Using Normalized Mutual Information Method and Preprocessing Techniques

被引:1
|
作者
Bzowski, Pawel [1 ,2 ]
Borys, Damian [1 ,2 ]
Guz, Wieslaw [3 ,4 ]
Obuchowicz, Rafal [5 ]
Piorkowski, Adam [6 ]
机构
[1] Maria Sklodowska Curie Inst Oncol Ctr, Gliwice Branch, PET Diagnost Dept, Gliwice, Poland
[2] Silesian Tech Univ, Biotechnol Ctr, Gliwice, Poland
[3] Univ Rzeszow, Fac Med, Inst Expt & Clin Med, Dept Radiol Diagnost Imaging & Nucl Med, Rzeszow, Poland
[4] Univ Rzeszow, Fac Med, Inst Nursing & Hlth Sci, Dept Electroradiol, Rzeszow, Poland
[5] Jagiellonian Univ Med Coll, Dept Diagnost Imaging, 19 Kopernika St, PL-31501 Krakow, Poland
[6] AGH Univ Sci & Technol, Dept Biocybernet & Biomed Engn, Al Mickiewicza 30, PL-30059 Krakow, Poland
关键词
Magnetic Resonance Imaging; Co-registration; Matching; T1 and T2 weighted images; SEGMENTATION;
D O I
10.1007/978-3-030-31254-1_12
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
One of the common methods for medical diagnosis is Magnetic Resonance Imaging (MRI), a safe, non-invasive method. During each imaging session a patient's position may be different, therefore comparison of two sequences can become difficult. The primary goal of this work is preparation of an optimal algorithm for co-registration of T1 and T2 weighted MRI images. To adjust co-registration sensitivity, different preprocessing methods to perform normalizations and edge detection were used. The obtained results allow to increase quality of the co-registration process.
引用
收藏
页码:92 / 100
页数:9
相关论文
共 50 条
  • [31] Mini-Batch Normalized Mutual Information: A Hybrid Feature Selection Method
    Thejas, G. S.
    Joshi, Sajal Raj
    Iyengar, S. S.
    Sunitha, N. R.
    Badrinath, Prajwal
    IEEE ACCESS, 2019, 7 : 116875 - 116885
  • [32] An unsupervised gene selection method based on multivariate normalized mutual information of genes
    Rahmanian, Mohsen
    Mansoori, Eghbal G.
    CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2022, 222
  • [33] A Normalized Congruent Matching Area Method for the Correlation of Breech Face Impression Images
    Chen, Zhe
    Song, John
    Chu, Wei
    Tong, Mingsi
    Zhao, XueZeng
    JOURNAL OF RESEARCH OF THE NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY, 2018, 123
  • [34] Performance evaluation of preprocessing techniques utilizing expert information in multivariate calibration
    Sharma, Sandeep
    Goodarzi, Mohammad
    Ramon, Herman
    Saeys, Wouter
    TALANTA, 2014, 121 : 105 - 112
  • [35] Matching contours in images using curvature information
    Oliveira, Francisco M.
    Tavares, Joao Manuel R. S.
    COMPUTATIONAL VISION AND MEDICAL IMAGING PROCESSING, 2008, : 375 - 379
  • [36] Localization of prostatic tumor?s infection based on normalized mutual information MRI image segmentation
    Lu, Guoping
    Zhou, Lixin
    JOURNAL OF INFECTION AND PUBLIC HEALTH, 2021, 14 (03) : 432 - 436
  • [37] Analysis of functional MRI data using mutual information
    Tsai, A
    Fisher, JW
    Wible, C
    Wells, WM
    Kim, J
    Willsky, AS
    MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION, MICCAI'99, PROCEEDINGS, 1999, 1679 : 473 - 480
  • [38] Registration of Cervical MRI Using Multifeature Mutual Information
    Staring, Marius
    van der Heide, Uulke A.
    Klein, Stefan
    Viergever, Max A.
    Pluim, Josien P. W.
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2009, 28 (09) : 1412 - 1421
  • [39] To Align Multimodal Lumbar Spine Images via Bending Energy Constrained Normalized Mutual Information
    Wu, Shibin
    He, Pin
    Yu, Shaode
    Zhou, Shoujun
    Xia, Jun
    Xie, Yaoqin
    BIOMED RESEARCH INTERNATIONAL, 2020, 2020
  • [40] Detecting Infarct Region in Cardiac Magnetic Resonance Images Through Weighted Normalized Mutual Information
    Yousefi-Banaem, Hossein
    Kermani, Saeed
    Sanei, Hamid
    Daneshmehr, Alireza
    IRANIAN JOURNAL OF RADIOLOGY, 2017, 14 (03)