In order to enhance the solid-liquid separation properties and nitrogen removal efficiency of SBR, the aerobic floc-like granules were cultivated under temporal alternating aerobic and anoxic conditions without the presence of carrier material in a SBR having 15 H/D (height/diameter) ratio. Two different effluent port positions were applied to the SBR for different selection of minimum settling velocities (over 0.6 and 0.7 m/h) of granules retained in the SBR during aerobic floc-like granule formation. The effect of different minimum settling velocities as an operational parameter on the size and solid-liquid separation properties of floc-like granules and also the COD and nitrogen removal of SBR were evaluated. The reactor was operated 6 hours per cycle (aerobic 4.75 hours, anoxic 1.25 hours) under chemical oxygen demand (COD) loading rate of 2.5 kg/m(3.)d (1.3 kg acetate-COD and 1.2 kg glucose-COD). When increasing the minimum settling velocity by 0.1 m/h, the following results were observed at steady state. The nitrification efficiency was not changed at about 97% but the denitrification efficiency was improved from 78 to 97%. The COD removal efficiency was improved from 82 to 97% and the concentration of biomass in the reactor was retained at lower level at about 3,000 mg MLSS/L. The average sludge volume index (SVI) value of granules was decreased about 85 to 50 mL/g and the granule sizes were increased 0.1-0.5 mm to 1.0-2.0 mm. The required time to form granules and reach steady state was significantly shortened. Based on the results, the selection of the minimum settling velocity had a significant effect on both the physical properties of granules and the SBR performance, so it is suggested to use the minimum settling velocity as an operational parameter.
机构:
Shandong Univ, Sch Environm Sci & Engn, Shandong Prov Key Lab Water Pollut Control & Reso, Jinan 250100, Shandong, Peoples R China
Shandong Normal Univ, Coll Life Sci, Jinan 250014, Shandong, Peoples R ChinaShandong Univ, Sch Environm Sci & Engn, Shandong Prov Key Lab Water Pollut Control & Reso, Jinan 250100, Shandong, Peoples R China
Kong, Qiang
Zhang, Jian
论文数: 0引用数: 0
h-index: 0
机构:
Shandong Univ, Sch Environm Sci & Engn, Shandong Prov Key Lab Water Pollut Control & Reso, Jinan 250100, Shandong, Peoples R ChinaShandong Univ, Sch Environm Sci & Engn, Shandong Prov Key Lab Water Pollut Control & Reso, Jinan 250100, Shandong, Peoples R China
Zhang, Jian
Huu Hao Ngo
论文数: 0引用数: 0
h-index: 0
机构:
Univ Technol Sydney, Sch Civil & Environm Engn, Broadway, NSW 2007, AustraliaShandong Univ, Sch Environm Sci & Engn, Shandong Prov Key Lab Water Pollut Control & Reso, Jinan 250100, Shandong, Peoples R China
Huu Hao Ngo
Ni, Shouqing
论文数: 0引用数: 0
h-index: 0
机构:
Shandong Univ, Sch Environm Sci & Engn, Shandong Prov Key Lab Water Pollut Control & Reso, Jinan 250100, Shandong, Peoples R ChinaShandong Univ, Sch Environm Sci & Engn, Shandong Prov Key Lab Water Pollut Control & Reso, Jinan 250100, Shandong, Peoples R China
Ni, Shouqing
Fu, Rongshu
论文数: 0引用数: 0
h-index: 0
机构:
Shandong Normal Univ, Coll Life Sci, Jinan 250014, Shandong, Peoples R ChinaShandong Univ, Sch Environm Sci & Engn, Shandong Prov Key Lab Water Pollut Control & Reso, Jinan 250100, Shandong, Peoples R China
Fu, Rongshu
Guo, Wenshan
论文数: 0引用数: 0
h-index: 0
机构:
Univ Technol Sydney, Sch Civil & Environm Engn, Broadway, NSW 2007, AustraliaShandong Univ, Sch Environm Sci & Engn, Shandong Prov Key Lab Water Pollut Control & Reso, Jinan 250100, Shandong, Peoples R China
Guo, Wenshan
Guo, Ning
论文数: 0引用数: 0
h-index: 0
机构:
Shandong Univ, Sch Environm Sci & Engn, Shandong Prov Key Lab Water Pollut Control & Reso, Jinan 250100, Shandong, Peoples R ChinaShandong Univ, Sch Environm Sci & Engn, Shandong Prov Key Lab Water Pollut Control & Reso, Jinan 250100, Shandong, Peoples R China
Guo, Ning
Tian, Lin
论文数: 0引用数: 0
h-index: 0
机构:
Shandong Normal Univ, Coll Life Sci, Jinan 250014, Shandong, Peoples R ChinaShandong Univ, Sch Environm Sci & Engn, Shandong Prov Key Lab Water Pollut Control & Reso, Jinan 250100, Shandong, Peoples R China