ON THE RATIONAL RECURSIVE SEQUENCE xn+1 = axn-1/b+cxnxn-1

被引:0
|
作者
Andruch-Sobilo, Anna [1 ]
Migda, Malgorzata [1 ]
机构
[1] Poznan Tech Univ, Inst Math, PL-60965 Poznan, Poland
关键词
rational difference equation; equilibrium point; explicit formula; boundedness; global asymptotic stability; DIFFERENCE EQUATION; POSITIVE SOLUTIONS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we consider the difference equation x(n+1) = ax(n-1)/b+cx(n)x(n-1), n = 0,1, ... (E) with positive parameters and nonnegative initial conditions. We use the explicit formula for the solutions of equation (E) in investigating their behavior.
引用
收藏
页码:1 / 9
页数:9
相关论文
共 50 条
  • [21] On the Recursive Sequence xn+1 = A + (xn-1p/xnq)
    Schinas, C. J.
    Papaschinopoulos, G.
    Stefanidou, G.
    ADVANCES IN DIFFERENCE EQUATIONS, 2009,
  • [22] The recursive sequence xn+1=g(xn,xn-1)/(A+xn)
    Stevo, S
    APPLIED MATHEMATICS LETTERS, 2002, 15 (03) : 305 - 308
  • [23] On the recursive sequence xn+1=(αxn+βxn-1)/(A+xn)
    Kulenovic, MRS
    Ladas, G
    Prokup, NR
    JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2000, 6 (05) : 563 - 576
  • [24] On the Recursive Sequence xn+1 = max{xn, A} / xn2xn-1
    Yalcinkaya, Ibrahim
    Cinar, Cengiz
    Gelisken, Ali
    DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2010, 2010
  • [25] Global behavior of the difference equation xn+1 = Axn-1/B-Cx(n)x(n-2)
    Abo-Zeid, R.
    Cinar, Cengiz
    BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2013, 31 (01): : 43 - 49
  • [26] On the Recursive Sequence xn+1 = xn-7/1+xn-3
    Simsek, D.
    Kyzy, P. Esengul
    Kyzy, M. Imash
    FILOMAT, 2019, 33 (05) : 1381 - 1386
  • [27] On the recursive sequence xn+1=A+xnp/xn-1r
    Stevic, Stevo
    DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2007, 2007
  • [28] On the recursive sequence Xn+1 = p+Xn-k/Xn
    DeVault, R
    Kent, C
    Kosmala, W
    JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2003, 9 (08) : 721 - 730
  • [29] 差分方程xn+1=(axn-1)/(1+bx_nxn-1)的全局稳定性
    完巧玲
    陇东学院学报, 2009, 20 (02) : 6 - 8
  • [30] On the Solutions of the Recursive Sequence xn+1 = axn-k/a=Pi(k)(i=0) xn-i
    Ergin, Saniye
    Karatas, Ramazan
    THAI JOURNAL OF MATHEMATICS, 2016, 14 (02): : 391 - 397