PHENIX: a comprehensive Python']Python-based system for macromolecular structure solution

被引:19072
|
作者
Adams, Paul D. [1 ,2 ]
Afonine, Pavel V. [1 ]
Bunkoczi, Gabor [3 ]
Chen, Vincent B. [4 ]
Davis, Ian W. [4 ]
Echols, Nathaniel [1 ]
Headd, Jeffrey J. [4 ]
Hung, Li-Wei [5 ]
Kapral, Gary J. [4 ]
Grosse-Kunstleve, Ralf W. [1 ]
McCoy, Airlie J. [3 ]
Moriarty, Nigel W. [1 ]
Oeffner, Robert [3 ]
Read, Randy J. [3 ]
Richardson, David C. [4 ]
Richardson, Jane S. [4 ]
Terwilliger, Thomas C. [5 ]
Zwart, Peter H. [1 ]
机构
[1] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA
[2] Univ Calif Berkeley, Dept Bioengn, Berkeley, CA 94720 USA
[3] Univ Cambridge, Cambridge Inst Med Res, Dept Haematol, Cambridge CB2 0XY, England
[4] Duke Univ, Med Ctr, Dept Biochem, Durham, NC 27710 USA
[5] Los Alamos Natl Lab, Los Alamos, NM 87545 USA
基金
英国惠康基金;
关键词
STATISTICAL DENSITY MODIFICATION; STRUCTURE VALIDATION; MOLECULAR REPLACEMENT; CRYSTAL-STRUCTURE; ATOM CONTACTS; REFINEMENT; PARAMETERS; MAPS; MOLPROBITY; OPTIMIZATION;
D O I
10.1107/S0907444909052925
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Macromolecular X-ray crystallography is routinely applied to understand biological processes at a molecular level. However, significant time and effort are still required to solve and complete many of these structures because of the need for manual interpretation of complex numerical data using many software packages and the repeated use of interactive three-dimensional graphics. PHENIX has been developed to provide a comprehensive system for macromolecular crystallographic structure solution with an emphasis on the automation of all procedures. This has relied on the development of algorithms that minimize or eliminate subjective input, the development of algorithms that automate procedures that are traditionally performed by hand and, finally, the development of a framework that allows a tight integration between the algorithms.
引用
收藏
页码:213 / 221
页数:9
相关论文
共 50 条
  • [21] Improving the Latency of Python']Python-based Web Applications
    Esteves, Antonio
    Fernandes, Joao
    WEBIST: PROCEEDINGS OF THE 15TH INTERNATIONAL CONFERENCE ON WEB INFORMATION SYSTEMS AND TECHNOLOGIES, 2019, : 193 - 201
  • [22] PYSCF: the Python']Python-based simulations of chemistry framework
    Sun, Qiming
    Berkelbach, Timothy C.
    Blunt, Nick S.
    Booth, George H.
    Guo, Sheng
    Li, Zhendong
    Liu, Junzi
    McClain, James D.
    Sayfutyarova, Elvira R.
    Sharma, Sandeep
    Wouters, Sebastian
    Chan, Garnet Kin-Lic
    WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE, 2018, 8 (01)
  • [23] Python']Python-Based Reinforcement Learning on Simulink Models
    Schaefer, Georg
    Schirl, Max
    Rehrl, Jakob
    Huber, Stefan
    Hirlaender, Simon
    COMBINING, MODELLING AND ANALYZING IMPRECISION, RANDOMNESS AND DEPENDENCE, SMPS 2024, 2024, 1458 : 449 - 456
  • [24] Python']Python-Based TinyIPFIX in Wireless Sensor Networks
    Schiller, Eryk
    Huber, Ramon
    Stiller, Burkhard
    PROCEEDINGS OF THE IEEE 46TH CONFERENCE ON LOCAL COMPUTER NETWORKS (LCN 2021), 2021, : 431 - 434
  • [25] Python']Python-Based Fuzzy Classifier for Cashew Kernels
    Tomar, Snehal Singh
    Narendra, V. G.
    SOFT COMPUTING FOR PROBLEM SOLVING, SOCPROS 2017, VOL 1, 2019, 816 : 365 - 374
  • [26] Network Automation Python']Python-based Application: The performance of a Multi-Layer Cloud Based Solution
    Al-Mekhlal, Monerah
    AlYahya, Abdulrahman
    Aldhamin, Abdullah
    Khan, Azmath
    2022 IEEE INTERNATIONAL CONFERENCE ON OMNI-LAYER INTELLIGENT SYSTEMS (IEEE COINS 2022), 2022, : 165 - 172
  • [27] Feasibility Study for a Python']Python-Based Embedded Real-Time Control System
    Cho, Se Yeon
    Delgado, Raimarius
    Choi, Byoung Wook
    ELECTRONICS, 2023, 12 (06)
  • [28] ANDES: A Python']Python-Based Cyber-Physical Power System Simulation Tool
    Cui, Hantao
    Li, Fangxing
    2018 NORTH AMERICAN POWER SYMPOSIUM (NAPS), 2018,
  • [29] GPUPeP: Parallel Enzymatic Numerical P System simulator with a Python']Python-based interface
    Raghavan, S.
    Rai, Shanthanu S.
    Rohit, M. P.
    Chandrasekaran, K.
    BIOSYSTEMS, 2020, 196
  • [30] FitAO: a Python']Python-based platform for algorithmic development in AO
    Krokberg, Tomi
    Nousiainen, Jalo
    Lehtonen, Jonatan
    Helin, Tapio
    ADAPTIVE OPTICS SYSTEMS VIII, 2022, 12185