SOLUTIONS OF THE AW-RASCLE-ZHANG SYSTEM WITH POINT CONSTRAINTS

被引:11
|
作者
Andreianov, Boris P. [1 ,3 ]
Donadello, Carlotta [1 ]
Razafison, Ulrich [1 ]
Rolland, Julien Y. [1 ]
Rosini, Massimiliano D. [2 ]
机构
[1] Univ Franche Comte, LMB Lab Math CNRS UMR6623, 16 Route Gray, F-25030 Besancon, France
[2] Uniwersytet Marii Curie Sklodowskiej, Inst Matemat, Pl Marii Curie Sklodowskiej 1, PL-20031 Lublin, Poland
[3] Univ Tours, CNRS UMR 7350, LMPT, Parc Grandmont, F-37200 Tours, France
关键词
Road traffic modeling; point constraint; Aw-Rascle and Zhang model; entropies; renormalization; admissible solutions; numerical experiments; TRAFFIC MODEL; EXISTENCE;
D O I
10.3934/nhm.2016.11.29
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We revisit the entropy formulation and the wave-front tracking construction of physically admissible solutions of the Aw-Rascle and Zhang (ARZ) "second-order" model for vehicular traffic. A Kruzhkov-like family of entropies is introduced to select the admissible shocks. This tool allows to define rigorously the appropriate notion of admissible weak solution and to approximate the solutions of the ARZ model with point constraint. Stability of solutions w.r.t. strong convergence is justified. We propose a finite volumes numerical scheme for the constrained ARZ, and we show that it can correctly locate contact discontinuities and take the constraint into account.
引用
收藏
页码:29 / 47
页数:19
相关论文
共 50 条
  • [21] MANY PARTICLE APPROXIMATION OF THE AW-RASCLE-ZHANG SECOND ORDER MODEL FOR VEHICULAR TRAFFIC
    Di Francesco, Marco
    Fagioli, Simone
    Rosini, Massimillano D.
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2017, 14 (01) : 127 - 141
  • [22] Bound-preserving OEDG schemes for Aw-Rascle-Zhang traffic models on networks
    Chen, Wei
    Cui, Shumo
    Wu, Kailiang
    Xiong, Tao
    JOURNAL OF COMPUTATIONAL PHYSICS, 2025, 520
  • [23] Stability analysis of a hyperbolic stochastic Galerkin formulation for the Aw-Rascle-Zhang model with relaxation
    Gerster, Stephan
    Herty, Michael
    Iacomini, Elisa
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2021, 18 (04) : 4372 - 4389
  • [24] Boundary Observer for Congested Freeway Traffic State Estimation via Aw-Rascle-Zhang model
    Yu, Huan
    Bayen, Alexandre M.
    Krstic, Miroslav
    IFAC PAPERSONLINE, 2019, 52 (02): : 183 - 188
  • [25] The asymptotic behavior of Riemann solutions for the Aw-Rascle-Zhang traffic flow model with the polytropic and logarithmic combined pressure term
    Li, Xinlin
    Shen, Chun
    APPLICABLE ANALYSIS, 2025, 104 (03) : 544 - 563
  • [26] Traffic State Estimation Method with Efficient Data Fusion Based on the Aw-Rascle-Zhang Model
    Seo, Toru
    Bayen, Alexandre M.
    2017 IEEE 20TH INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS (ITSC), 2017,
  • [27] 耦合Aw-Rascle-Zhang模型的Riemann解及其稳定性
    潘丽君
    吕顺
    翁莎莎
    数学物理学报, 2024, 44 (04) : 885 - 895
  • [28] THE WAVE INTERACTIONS OF AN IMPROVED AW-RASCLE-ZHANG MODEL WITH A NON-GENUINELY NONLINEAR FIELD
    Jiang, Weifeng
    Chen, Tingting
    Li, Tong
    Wang, Zhen
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2023, 28 (02): : 1528 - 1552
  • [29] PARETO-OPTIMAL COUPLING CONDITIONS FOR THE AW-RASCLE-ZHANG TRAFFIC FLOW MODEL AT JUNCTIONS
    Kolb, Oliver
    Costeseque, Guillaume
    Goatin, Paola
    Goettlich, Simone
    SIAM JOURNAL ON APPLIED MATHEMATICS, 2018, 78 (04) : 1981 - 2002
  • [30] The Riemann Problem with Delta Initial Data for the Non-Isentropic Improved Aw-Rascle-Zhang Model
    Weifeng Jiang
    Tingting Chen
    Tong Li
    Zhen Wang
    Acta Mathematica Scientia, 2023, 43 : 237 - 258