Passage Retrieval on Structured Documents Using Graph Attention Networks

被引:1
|
作者
Albarede, Lucas [1 ,2 ]
Mulhem, Philippe [1 ]
Goeuriot, Lorraine [1 ]
Le Pape-Gardeux, Claude [2 ]
Marie, Sylvain [2 ]
Chardin-Segui, Trinidad [2 ]
机构
[1] Univ Grenoble Alpes, LIG, Grenoble INP, CNRS, F-38000 Grenoble, France
[2] Schneider Elect Ind SAS, Rueil Malmaison, France
来源
关键词
Passage Retrieval; Graph Attention Networks; Experiments; Document representation;
D O I
10.1007/978-3-030-99739-7_2
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Passage Retrieval systems aim at retrieving and ranking small text units according to their estimated relevance to a query. A usual practice is to consider the context a passage appears in (its containing document, neighbour passages, etc.) to improve its relevance estimation. In this work, we study the use of Graph Attention Networks (GATs), a graph node embedding method, to perform passage contextualization. More precisely, we first propose a document graph representation based on several inter- and intra-document relations. Then, we investigate two ways of leveraging the use of GATs on this representation in order to incorporate contextual information for passage retrieval. We evaluate our approach on a Passage Retrieval task for structured documents: CLEF-IP2013. Our results show that our document graph representation coupled with the expressive power of GATs allows for a better context representation leading to improved performances.
引用
收藏
页码:13 / 21
页数:9
相关论文
共 50 条
  • [21] Ranking structured documents using utility theory in the Bayesian Network retrieval model
    Crestani, F
    de Campos, LM
    Fernández-Luna, JM
    Huete, JF
    [J]. STRING PROCESSING AND INFORMATION RETRIEVAL, PROCEEDINGS, 2003, 2857 : 168 - 182
  • [22] HiPool: Modeling Long Documents Using Graph Neural Networks
    Li, Irene R.
    Feng, Aosong
    Radev, Dragomir
    Ying, Rex
    [J]. 61ST CONFERENCE OF THE THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, ACL 2023, VOL 2, 2023, : 161 - 171
  • [23] Efficient Clustering of Structured Documents Using Graph Self-Organizing Maps
    Hagenbuchner, Markus
    Tsoi, Ah Chung
    Sperduti, Alessandro
    Kc, Milly
    [J]. FOCUSED ACCESS TO XML DOCUMENTS, 2008, 4862 : 207 - +
  • [24] SLOGAN: SDC probability estimation using structured graph attention network
    Ma, Junchi
    Huang, Sulei
    Duan, Zongtao
    Tang, Lei
    Wang, Luyang
    [J]. 2023 28TH ASIA AND SOUTH PACIFIC DESIGN AUTOMATION CONFERENCE, ASP-DAC, 2023, : 296 - 301
  • [25] GATES: Using Graph Attention Networks for Entity Summarization
    Firmansyah, Asep Fajar
    Moussallem, Diego
    Ngomo, Axel-Cyrille Ngonga
    [J]. PROCEEDINGS OF THE 11TH KNOWLEDGE CAPTURE CONFERENCE (K-CAP '21), 2021, : 73 - 80
  • [26] Supervised Attention Using Homophily in Graph Neural Networks
    Chatzianastasis, Michail
    Nikolentzos, Giannis
    Vazirgiannis, Michalis
    [J]. ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING, ICANN 2023, PT IV, 2023, 14257 : 576 - 586
  • [27] Enhancing Facial Reconstruction Using Graph Attention Networks
    Lee, Hyeong Geun
    Hur, Jee Sic
    Yoon, Yeo Chan
    Kim, Soo Kyun
    [J]. IEEE ACCESS, 2023, 11 : 136680 - 136691
  • [28] Overlapping community detection using graph attention networks
    Sismanis, Konstantinos
    Potikas, Petros
    Souliou, Dora
    Pagourtzis, Aris
    [J]. Future Generation Computer Systems, 2025, 163
  • [29] Segmentation Strategies for Passage Retrieval in Audio-Visual Documents
    Galuscakova, Petra
    [J]. SIGIR'13: THE PROCEEDINGS OF THE 36TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH & DEVELOPMENT IN INFORMATION RETRIEVAL, 2013, : 1143 - 1143
  • [30] Partial retrieval of compressed semi-structured documents
    Gupta, Ashutosh
    Agarwal, Suneeta
    [J]. INTERNATIONAL JOURNAL OF COMPUTER APPLICATIONS IN TECHNOLOGY, 2010, 38 (04) : 239 - 249