The influence of a power law drift on the exit time of Brownian motion from a half-line

被引:3
|
作者
DeBlassie, Dante
Smits, Robert
机构
[1] Texas A&M Univ, Dept Math, College Stn, TX 77843 USA
[2] New Mexico State Univ, Dept Math Sci, Dept 3MB, Las Cruces, NM 88003 USA
关键词
lifetime; Brownian motion; Bessel process; large deviations; calculus of variations; h-transform;
D O I
10.1016/j.spa.2006.09.009
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The addition of a Bessel drift 1/x to a Brownian motion affects the lifetime of the process in the interval (0, infinity) in a well-understood way. We study the corresponding effect of a power -beta/x(p) (beta not equal 0, p > 0) of the Bessel drift. The most interesting case occurs when beta > 0. If p > 1 then the effect of the drift is not too great in the sense that the exit time has the same critical value q(0) for the existence of qth moments (q > 0) as the exit time of Brownian motion. When p < 1, the influence is much greater: the exit time has exponential moments. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:629 / 654
页数:26
相关论文
共 50 条
  • [31] First passage time and mean exit time for switching Brownian motion
    Tong, Jinying
    Wu, Ruifang
    Zhang, Qianqian
    Zhang, Zhenzhong
    Zhu, Enwen
    STOCHASTICS AND DYNAMICS, 2023, 23 (01)
  • [32] An occupation time identity for reflecting Brownian motion with drift
    Kozlova M.
    Salminen P.
    Periodica Mathematica Hungarica, 2005, 50 (1-2) : 189 - 198
  • [33] Predicting the Time of the Ultimate Maximum for Brownian Motion with Drift
    du Toit, Jacques
    Peskir, Goran
    MATHEMATICAL CONTROL THEORY AND FINANCE, 2008, : 95 - 112
  • [34] Reciprocal Time Relation of Noncolliding Brownian Motion with Drift
    Makoto Katori
    Journal of Statistical Physics, 2012, 148 : 38 - 52
  • [35] Brownian Motion with Singular Time-Dependent Drift
    Peng Jin
    Journal of Theoretical Probability, 2017, 30 : 1499 - 1538
  • [36] Reciprocal Time Relation of Noncolliding Brownian Motion with Drift
    Katori, Makoto
    JOURNAL OF STATISTICAL PHYSICS, 2012, 148 (01) : 38 - 52
  • [37] Branching Brownian motion with absorption and the all-time minimum of branching Brownian motion with drift
    Berestycki, Julien
    Brunet, Eric
    Harris, Simon C.
    Milos, Piotr
    JOURNAL OF FUNCTIONAL ANALYSIS, 2017, 273 (06) : 2107 - 2143
  • [38] The first exit time of fractional Brownian motion from the minimum and maximum parabolic domains
    Lu, Dawei
    Zhou, Yinbing
    STATISTICS & PROBABILITY LETTERS, 2022, 186
  • [39] EXPECTED SIGNATURE OF BROWNIAN MOTION UP TO THE FIRST EXIT TIME FROM A BOUNDED DOMAIN
    Lyons, Terry
    Ni, Hao
    ANNALS OF PROBABILITY, 2015, 43 (05): : 2729 - 2762
  • [40] Integrability properties and limit theorems for the exit time from a cone of planar Brownian motion
    Vakeroudis, Stavros
    Yor, Marc
    BERNOULLI, 2013, 19 (5A) : 2000 - 2009