Agmatine prevents the Ca2+-dependent induction of permeability transition in rat brain mitochondria

被引:45
|
作者
Battaglia, V. [1 ]
Grancara, S. [1 ]
Satriano, J. [2 ]
Saccoccio, S. [3 ,4 ,5 ]
Agostinelli, E. [3 ,4 ,5 ]
Toninello, A. [1 ]
机构
[1] Univ Padua, Dept Biol Chem, I-35121 Padua, Italy
[2] Univ Calif San Diego, Dept Med, Div Nephrol Hypertens, Vet Adm San Diego Healthcare Syst, San Diego, CA 92103 USA
[3] Univ Roma La Sapienza, Dept Biochem Sci, I-00185 Rome, Italy
[4] CNR, Inst Biol, I-00185 Rome, Italy
[5] CNR, Inst Mol Pathol, I-00185 Rome, Italy
关键词
Rat brain mitochondria; Agmatine; Mitochondrial permeability transition; Ca2+; Reactive oxygen species; NATURAL POLYAMINE SPERMINE; LIVER-MITOCHONDRIA; OXIDATIVE STRESS; ARGININE; PROLIFERATION; MECHANISM; SCAVENGER; TISSUES;
D O I
10.1007/s00726-009-0402-0
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The arginine metabolite agmatine is able to protect brain mitochondria against the drop in energy capacity by the Ca2+-dependent induction of permeability transition (MPT) in rat brain mitochondria. At normal levels, the amine maintains the respiratory control index and ADP/O ratio and prevents mitochondrial colloid-osmotic swelling and any electrical potential (Delta I) drop. MPT is due to oxidative stress induced by the interaction of Ca2+ with the mitochondrial membrane, leading to the production of hydrogen peroxide and, subsequently, other reactive oxygen species (ROS) such as hydroxyl radicals. This production of ROS induces oxidation of sulfhydryl groups, in particular those of two critical cysteines, most probably located on adenine nucleotide translocase, and also oxidation of pyridine nucleotides, resulting in transition pore opening. The protective effect of agmatine is attributable to a scavenging effect on the most toxic ROS, i.e., the hydroxyl radical, thus preventing oxidative stress and consequent bioenergetic collapse.
引用
收藏
页码:431 / 437
页数:7
相关论文
共 50 条
  • [31] Mitochondria from Dipodascus (Endomyces) magnusii and Yarrowia lipolytica yeasts did not undergo a Ca2+-dependent permeability transition even under anaerobic conditions
    Tat’yana Trendeleva
    Evgeniya Sukhanova
    Ludmila Ural’skaya
    Nils-Erik Saris
    Renata Zvyagilskaya
    Journal of Bioenergetics and Biomembranes, 2011, 43 : 623 - 631
  • [32] Mitochondrial permeability transition in rat hepatocytes after anoxia/reoxygenation: role of Ca2+-dependent mitochondrial formation of reactive oxygen species
    Kim, Jae-Sung
    Wang, Jin-Hee
    Lemasters, John J.
    AMERICAN JOURNAL OF PHYSIOLOGY-GASTROINTESTINAL AND LIVER PHYSIOLOGY, 2012, 302 (07): : G723 - G731
  • [33] Ca2+-dependent fusion pore induced by α,ω-dioic acids as a possible mechanism of the mitochondrial permeability transition
    Dubinin, M.
    Samartsev, V.
    Belosludtsev, K.
    FEBS JOURNAL, 2014, 281 : 344 - 344
  • [34] Ca2+-dependent permeability transition and complex I activity in lymphoblast mitochondria from normal individuals and patients with Huntington's or Alzheimer's disease
    Panov, A
    Obertone, T
    Bennett-Desmelik, J
    Greenamyre, JT
    OXIDATIVE/ENERGY METABOLISM IN NEURODEGENERATIVE DISORDERS, 1999, 893 : 365 - 368
  • [35] Mitochondria from Dipodascus (Endomyces) magnusii and Yarrowia lipolytica yeasts did not undergo a Ca2+-dependent permeability transition even under anaerobic conditions
    Trendeleva, Tat'yana
    Sukhanova, Evgeniya
    Ural'skaya, Ludmila
    Saris, Nils-Erik
    Zvyagilskaya, Renata
    JOURNAL OF BIOENERGETICS AND BIOMEMBRANES, 2011, 43 (06) : 623 - 631
  • [36] Combined effect of G3139 and TSPO ligands on Ca2+-induced permeability transition in rat brain mitochondria
    Azarashvili, T.
    Krestinina, O.
    Baburina, Yu
    Odinokova, I.
    Grachev, D.
    Papadopoulos, V.
    Akatov, V.
    Lemasters, J. J.
    Reiser, G.
    ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS, 2015, 587 : 70 - 77
  • [37] Motility of astrocytic mitochondria is arrested by Ca2+-dependent interaction between mitochondria and actin filaments
    Kremneva, Elena
    Kislin, Mikhail
    Kang, Xiaoying
    Khiroug, Leonard
    CELL CALCIUM, 2013, 53 (02) : 85 - 93
  • [38] The role of cyclophilin D in the resistance of brain mitochondria to induction of the mitochondrial permeability transition
    Eliseev, R. A.
    Filippov, G.
    Velos, J.
    VanWinkle, B.
    Goldman, A.
    Gunter, T.
    Rosier, R.
    BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS, 2006, : 493 - 493
  • [39] Ursodeoxycholic acid, in contrast to other bile acids, induces Ca2+-dependent cyclosporin A-insensitive permeability transition in liver mitochondria in the presence of potassium chloride
    Khoroshavina E.I.
    Dubinin M.V.
    Samartsev V.N.
    Biochemistry (Moscow) Supplement Series A: Membrane and Cell Biology, 2016, 10 (4) : 287 - 293
  • [40] The Ca2+-dependent ATP-Mg/Pi carriers as novel regulators of the mitochondrial permeability transition pore
    Traba, Javier
    Amigo, Ignacio
    Rueda, Carlos
    Szabadkai, Gyorgy
    Duchen, Michael R.
    Satrustegui, Jorgina
    del Arco, Araceli
    BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS, 2010, 1797 : 130 - 130