Effect of ambient pressure on Leidenfrost temperature

被引:34
|
作者
Orejon, Daniel [1 ,2 ,3 ]
Sefiane, Khellil [1 ,3 ]
Takata, Yasuyuki [1 ,3 ]
机构
[1] Kyushu Univ, Int Inst Carbon Neutral Energy Res WPI I2CNER, Nishi Ku, Fukuoka 8190395, Japan
[2] Kyushu Univ, Dept Mech Engn, Thermofluid Phys Lab, Nishi Ku, Fukuoka 8190395, Japan
[3] Univ Edinburgh, Sch Engn, Edinburgh EH9 3JL, Midlothian, Scotland
来源
PHYSICAL REVIEW E | 2014年 / 90卷 / 05期
基金
英国工程与自然科学研究理事会;
关键词
POINT;
D O I
10.1103/PhysRevE.90.053012
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The accurate prediction and control of the interaction of liquids with hot surfaces is paramount in numerous areas, including cooling applications. We present results illustrating the effect of ambient pressure on the temperature required for a droplet to levitate over a hot surface, i.e., the Leidenfrost temperature. In the present study the dependence of wetting and levitating temperatures on ambient pressure in a range of subatmospheric pressures is reported. Experimental data indicate that the Leidenfrost temperature decreases with decreasing pressure at subatmospheric pressures. A physical approach for the dependence of Leidenfrost temperature on ambient pressure, based on an analogy with saturation pressure dependence, is proposed. Furthermore, previous literature data for pressures above atmospheric are also included in the analysis to support and validate the proposed approach. In addition, the effect of substrate material, substrate roughness, and type of fluid on the Leidenfrost temperature is discussed.
引用
收藏
页数:6
相关论文
共 50 条
  • [22] Effect on horizontal pressure in steel silos evoked by a sudden change in the ambient temperature
    Marcinowski, Jakub
    HELIYON, 2019, 5 (05)
  • [23] Effect of Nanoscale Confinement on Freezing of Modified Water at Room Temperature and Ambient Pressure
    Deshmukh, Sanket
    Kamath, Ganesh
    Sankaranarayanan, Subramanian K. R. S.
    CHEMPHYSCHEM, 2014, 15 (08) : 1632 - 1642
  • [24] Effect of Intake Pressure on the Performance of a Diesel Engine Under Different Ambient Temperature
    Liu R.
    Huang L.
    Lyu X.
    Feng M.
    Li H.
    Neiranji Xuebao/Transactions of CSICE (Chinese Society for Internal Combustion Engines), 2022, 40 (06): : 489 - 494
  • [25] Theoretical model of the Leidenfrost temperature
    Gavrilyuk, Sergey
    Gouin, Henri
    PHYSICAL REVIEW E, 2022, 106 (05)
  • [26] INFLUENCE OF PRESSURE ON THE LEIDENFROST TEMPERATURE AND ON EXTRACTED HEAT FLUXES IN THE TRANSIENT-MODE AND LOW-PRESSURE
    TESTA, P
    NICOTRA, L
    JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 1986, 108 (04): : 916 - 921
  • [27] THE LEIDENFROST EFFECT AT THE NANOSCALE
    Cordeiro, Jhonatam
    Desai, Salil
    PROCEEDINGS OF THE ASME 11TH INTERNATIONAL MANUFACTURING SCIENCE AND ENGINEERING CONFERENCE, 2016, VOL 1, 2016,
  • [28] The Leidenfrost Effect at the Nanoscale
    Cordeiro, Jhonatam
    Desai, Salil
    JOURNAL OF MICRO AND NANO-MANUFACTURING, 2016, 4 (04):
  • [29] The nanoscale Leidenfrost effect
    Rodrigues, Jhonatam
    Desai, Salil
    NANOSCALE, 2019, 11 (25) : 12139 - 12151
  • [30] Aerodynamic Leidenfrost effect
    Gauthier, Anais
    Bird, James C.
    Clanet, Christophe
    Quere, David
    PHYSICAL REVIEW FLUIDS, 2016, 1 (08):