Bayesian terrain-based underwater navigation using an improved state-space model

被引:15
|
作者
Anonsen, Kjetil Bergh [1 ]
Hallingstad, Oddvar [1 ]
Hagen, Ove Kent [2 ]
机构
[1] Norwegian Univ Sci & Technol, Dept Engn Cybernet, NO-7491 Trondheim, Norway
[2] Norwegian Def Res Estab FFI, NO-2027 Kjeller, Norway
关键词
D O I
10.1109/UT.2007.370773
中图分类号
TP24 [机器人技术];
学科分类号
080202 ; 1405 ;
摘要
This paper focuses on terrain aided underwater navigation as a means of aiding an inertial navigation system. It is assumed that a prior map is present and Bayesian methods are used to estimate the position of the vehicle. Traditionally this has been done using a crude low-dimensional model in the Bayesian filters. An improved state-space model is introduced, implemented in a particle filter/sequential Monte Carlo filter and tested on real AUV (autonomous underwater vehicle) data. Compared to conventional filter models, the new model yields smoother, slightly more accurate results, though problems with overconfidence occur.
引用
收藏
页码:499 / +
页数:2
相关论文
共 50 条
  • [31] Bayesian state estimation on finite horizons: The case of linear state-space model
    Zhao, Shunyi
    Huang, Biao
    Shmaliy, Yuriy S.
    AUTOMATICA, 2017, 85 : 91 - 99
  • [32] Terrain Aided Underwater Navigation Using Pockmarks
    Anonsen, Kjetil Bergh
    Hagen, Ove Kent
    OCEANS 2009, VOLS 1-3, 2009, : 2216 - 2221
  • [33] Integrating underwater video into traditional fisheries indices using a hierarchical formulation of a state-space model
    Gwinn, Daniel C.
    Bacheler, Nathan M.
    Shertzer, Kyle W.
    FISHERIES RESEARCH, 2019, 219
  • [34] The Principle of State Expansion in Task State-Space Navigation
    Pearce, Darren
    Luckin, Rosemary
    ARTIFICIAL INTELLIGENCE IN EDUCATION, 2007, 158 : 9 - 16
  • [35] TERRAIN-BASED NAVIGATION: A TOOL TO IMPROVE NAVIGATION AND FEATURE EXTRACTION PERFORMANCE OF MOBILE MAPPING SYSTEMS
    Toth, C.
    Grejner-brzezinska, D. A.
    Oh, J. H.
    Markiel, J. N.
    BOLETIM DE CIENCIAS GEODESICAS, 2009, 15 (05): : 807 - 823
  • [36] Mortality forecasting using a Lexis-based state-space model
    Andersson, Patrik
    Lindholm, Mathias
    ANNALS OF ACTUARIAL SCIENCE, 2021, 15 (03) : 519 - 548
  • [37] Bayesian computational methods for state-space models with application to SIR model
    Kim, Jaeoh
    Jo, Seongil
    Lee, Kyoungjae
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2023, 93 (07) : 1207 - 1223
  • [38] A point mass proposal method for Bayesian state-space model fitting
    Mary Llewellyn
    Ruth King
    Víctor Elvira
    Gordon Ross
    Statistics and Computing, 2023, 33
  • [39] General state-space population dynamics model for Bayesian stock assessment
    Mantyniemi, Samu H. P.
    Whitlock, Rebecca E.
    Perala, Tommi A.
    Blomstedt, Paul A.
    Vanhatalo, Jarno P.
    Maria Rincon, Margarita
    Kuparinen, Anna K.
    Pulkkinen, Henni P.
    Kuikka, O. Sakari
    ICES JOURNAL OF MARINE SCIENCE, 2015, 72 (08) : 2209 - 2222
  • [40] A point mass proposal method for Bayesian state-space model fitting
    Llewellyn, Mary
    King, Ruth
    Elvira, Victor
    Ross, Gordon
    STATISTICS AND COMPUTING, 2023, 33 (05)