Light-harvesting porphyrazines to enable intramolecular singlet fission

被引:15
|
作者
Medina, Diana-Paola [1 ]
Papadopoulos, Ilias [2 ,3 ]
Lavarda, Giulia [1 ]
Gotfredsen, Henrik [4 ]
Rami, Parisa R. [5 ]
Tykwinski, Rik R. [5 ]
Salome Rodriguez-Morgade, M. [1 ,6 ]
Guldi, Dirk M. [2 ,3 ]
Torres, Tomas [1 ,6 ,7 ]
机构
[1] Univ Autonoma Madrid, Dept Quim Organ, E-28049 Madrid, Spain
[2] Univ Erlangen Nurnberg, Dept Chem & Pharm, Egerlandstr 3, D-91058 Erlangen, Germany
[3] Univ Erlangen Nurnberg, ICMM, Egerlandstr 3, D-91058 Erlangen, Germany
[4] Univ Copenhagen, Dept Chem, Univ Pk 5, DK-2100 Copenhagen, Denmark
[5] Univ Alberta, Dept Chem, Edmonton, AB T6G 2G2, Canada
[6] Univ Autonoma Madrid, Inst Adv Res Chem Sci IAdChem, E-28049 Madrid, Spain
[7] IMDEA Nanociencia, C Faraday 9, Madrid 28049, Spain
基金
加拿大自然科学与工程研究理事会;
关键词
EXCITON FISSION; THIN-FILMS; PUSH-PULL;
D O I
10.1039/c9nr08161e
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A porphyrazine featuring complementary absorption to a pentacene dimer was chosen to fill the absorption gap of the latter in the range of 450 to 600 nm to realize panchromatic absorption through the visible region out to ca. 700 nm. Of even greater relevance is the quantitative intramolecular Forster resonance energy transfer (i-FRET) to funnel energy to the pentacene moieties, where efficient intramolecular singlet fission (i-SF) converts the singlet excited state into the corresponding triplet excited states. Remarkably, the triplet quantum yield either via direct excitation or via indirect i-FRET is up to 200% +/- 20% in polar solvents.
引用
收藏
页码:22286 / 22292
页数:7
相关论文
共 50 条
  • [41] LIGHT-HARVESTING PROCESSES IN ALGAE
    LARKUM, AWD
    BARRETT, J
    ADVANCES IN BOTANICAL RESEARCH, 1983, 10 : 1 - 219
  • [42] Light-harvesting chlorophyll pigments enable mammalian mitochondria to capture photonic energy and produce ATP
    Xu, Chen
    Zhang, Junhua
    Mihai, Doina M.
    Washington, Ilyas
    JOURNAL OF CELL SCIENCE, 2014, 127 (02) : 388 - 399
  • [43] THE MAJOR INTRINSIC LIGHT-HARVESTING PROTEIN OF AMPHIDINIUM - CHARACTERIZATION AND RELATION TO OTHER LIGHT-HARVESTING PROTEINS
    HILLER, RG
    WRENCH, PM
    GOOLEY, AP
    SHOEBRIDGE, G
    BRETON, J
    PHOTOCHEMISTRY AND PHOTOBIOLOGY, 1993, 57 (01) : 125 - 131
  • [44] A supramolecular dual-donor artificial light-harvesting system with efficient visible light-harvesting capacity
    Hu, Yi-Xiong
    Jia, Pei-Pei
    Zhang, Chang-Wei
    Xu, Xing-Dong
    Niu, Yanfei
    Zhao, Xiaoli
    Xu, Qian
    Xu, Lin
    Yang, Hai-Bo
    ORGANIC CHEMISTRY FRONTIERS, 2021, 8 (19): : 5250 - 5257
  • [45] Design strategy for efficient intramolecular singlet fission in oligoacenes
    Kumarasamy, Elango
    Campos, Luis
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2017, 253
  • [46] Novel oligo and polyacenes for intramolecular singlet fission devices
    Pun, Andrew
    Campos, Luis
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2017, 253
  • [47] Fluorescence upconversion and ab initio studies of the light-harvesting function of carotenoids in bacterial light-harvesting antenna
    Krueger, BP
    Scholes, GD
    Gould, IR
    Fleming, GR
    ULTRAFAST PHENOMENA XI, 1998, 63 : 666 - 668
  • [48] Efficacious elimination of intramolecular charge transfer in perylene imide based light-harvesting antenna molecules
    Dubey, Rajeev K.
    Inan, Damla
    Philip, Abbey M.
    Grozema, Ferdinand C.
    Jager, Wolter F.
    CHEMICAL COMMUNICATIONS, 2020, 56 (41) : 5560 - 5563
  • [49] A Mechanically Interlocked [3]Rotaxane as a Light-Harvesting Antenna: Synthesis, Characterization, and Intramolecular Energy Transfer
    Wang, Jie-Yu
    Han, Ji-Min
    Yan, Jing
    Ma, Yuguo
    Pei, Jian
    CHEMISTRY-A EUROPEAN JOURNAL, 2009, 15 (14) : 3585 - 3594
  • [50] Major intrinsic light-harvesting protein of Amphidinium. Characterization and relation to other light-harvesting proteins
    Hiller, Roger G.
    Wrench, Pamela M.
    Gooley, Andrew P.
    Shoebridge, Grant
    Breton, Jacques
    Photochemistry and Photobiology, 1993, 57 (01)