On the Local Convergence of Two-Step Newton Type Method in Banach Spaces under Generalized Lipschitz Conditions

被引:2
|
作者
Saxena, Akanksha [1 ]
Argyros, Ioannis K. [2 ]
Jaiswal, Jai P. [3 ]
Argyros, Christopher [4 ]
Pardasani, Kamal R. [1 ]
机构
[1] Maulana Azad Natl Inst Technol, Dept Math, Bhopal 462003, MP, India
[2] Cameron Univ, Dept Math Sci, Lawton, OK 73505 USA
[3] Guru Ghasidas Vishwavidyalaya, Dept Math, Bilaspur 495009, CG, India
[4] Univ Oklahoma, Dept Comp Sci, Norman, OK 73071 USA
关键词
banach space; nonlinear problem; local convergence; lipschitz condition; L-average; convergence ball;
D O I
10.3390/math9060669
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The motive of this paper is to discuss the local convergence of a two-step Newton-type method of convergence rate three for solving nonlinear equations in Banach spaces. It is assumed that the first order derivative of nonlinear operator satisfies the generalized Lipschitz i.e., L-average condition. Also, some results on convergence of the same method in Banach spaces are established under the assumption that the derivative of the operators satisfies the radius or center Lipschitz condition with a weak L-average particularly it is assumed that L is positive integrable function but not necessarily non-decreasing. Our new idea gives a tighter convergence analysis without new conditions. The proposed technique is useful in expanding the applicability of iterative methods. Useful examples justify the theoretical conclusions.
引用
收藏
页数:20
相关论文
共 50 条
  • [21] On local convergence of a Newton-type method in Banach space
    Argyros, Ioannis K.
    Chen, Jinhai
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2009, 86 (08) : 1366 - 1374
  • [22] Convergence Rate of Some Two-Step Iterative Schemes in Banach Spaces
    Wahab, O. T.
    Olawuyi, R. O.
    Rauf, K.
    Usamot, I. F.
    JOURNAL OF MATHEMATICS, 2016, 2016
  • [23] A two-step Steffensen's method under modified convergence conditions
    Amat, S.
    Busquier, S.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2006, 324 (02) : 1084 - 1092
  • [24] Local convergence of a Newton–Traub composition in Banach spaces
    Sharma J.R.
    Argyros I.K.
    SeMA Journal, 2018, 75 (1) : 57 - 68
  • [25] A wavelet adaptive two-step newton type method
    Amat, S
    Busquier, S
    Escudero, A
    ICNAAM 2004: INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2004, 2004, : 140 - 141
  • [26] Generalized conditions for the convergence of inexact Newton-like methods on banach spaces with a convergence structure and applications
    Ioannis K. Argyros
    Korean Journal of Computational & Applied Mathematics, 1998, 5 (2): : 391 - 405
  • [27] On a two-step relaxed Newton-type method
    Amat, S.
    Magrenan, A. A.
    Romero, N.
    APPLIED MATHEMATICS AND COMPUTATION, 2013, 219 (24) : 11341 - 11357
  • [28] A wavelet adaptive two-step Newton type method
    Amat, S.
    Busquier, S.
    Escudero, A.
    Manzano, F.
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2011, 348 (05): : 823 - 831
  • [29] Newton's method on generalized Banach spaces
    Argyros, Ioannis K.
    Behl, Ramandeep
    Motsa, S. S.
    JOURNAL OF COMPLEXITY, 2016, 35 : 16 - 28
  • [30] Generalized conditions for the convergence of inexact Newton-like methods on Banach spaces with a convergence structure and applications
    Argyros, Ioannis K.
    Korean Journal of Computational & Applied Mathematics, 1998, 5 (02): : 391 - 405