On the Local Convergence of Two-Step Newton Type Method in Banach Spaces under Generalized Lipschitz Conditions

被引:2
|
作者
Saxena, Akanksha [1 ]
Argyros, Ioannis K. [2 ]
Jaiswal, Jai P. [3 ]
Argyros, Christopher [4 ]
Pardasani, Kamal R. [1 ]
机构
[1] Maulana Azad Natl Inst Technol, Dept Math, Bhopal 462003, MP, India
[2] Cameron Univ, Dept Math Sci, Lawton, OK 73505 USA
[3] Guru Ghasidas Vishwavidyalaya, Dept Math, Bilaspur 495009, CG, India
[4] Univ Oklahoma, Dept Comp Sci, Norman, OK 73071 USA
关键词
banach space; nonlinear problem; local convergence; lipschitz condition; L-average; convergence ball;
D O I
10.3390/math9060669
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The motive of this paper is to discuss the local convergence of a two-step Newton-type method of convergence rate three for solving nonlinear equations in Banach spaces. It is assumed that the first order derivative of nonlinear operator satisfies the generalized Lipschitz i.e., L-average condition. Also, some results on convergence of the same method in Banach spaces are established under the assumption that the derivative of the operators satisfies the radius or center Lipschitz condition with a weak L-average particularly it is assumed that L is positive integrable function but not necessarily non-decreasing. Our new idea gives a tighter convergence analysis without new conditions. The proposed technique is useful in expanding the applicability of iterative methods. Useful examples justify the theoretical conclusions.
引用
收藏
页数:20
相关论文
共 50 条
  • [1] On semilocal convergence analysis for two-step Newton method under generalized Lipschitz conditions in Banach spaces
    Ling, Yonghui
    Liang, Juan
    Lin, Weihua
    NUMERICAL ALGORITHMS, 2022, 90 (02) : 577 - 606
  • [2] On semilocal convergence analysis for two-step Newton method under generalized Lipschitz conditions in Banach spaces
    Yonghui Ling
    Juan Liang
    Weihua Lin
    Numerical Algorithms, 2022, 90 : 577 - 606
  • [3] On an improved convergence analysis of a two-step Gauss-Newton type method under generalized Lipschitz conditions
    Argyros, I. K.
    Iakymchuk, R. P.
    Shakhno, S. M.
    Yarmola, H. P.
    CARPATHIAN JOURNAL OF MATHEMATICS, 2020, 36 (03) : 365 - 372
  • [4] On Convergence of the Accelerated Newton Method Under Generalized Lipschitz Conditions
    Shakhno S.М.
    Journal of Mathematical Sciences, 2016, 212 (1) : 16 - 26
  • [5] Local convergence of the Gauss-Newton-Kurchatov method under generalized Lipschitz conditions
    Shakhno, S. M.
    Yarmola, H. P.
    CARPATHIAN MATHEMATICAL PUBLICATIONS, 2021, 13 (02) : 305 - 314
  • [6] Extended Local Convergence for the Combined Newton-Kurchatov Method Under the Generalized Lipschitz Conditions
    Argyros, Ioannis K.
    Shakhno, Stepan
    MATHEMATICS, 2019, 7 (02)
  • [7] Semilocal convergence of a Secant-type method under weak Lipschitz conditions in Banach spaces
    Kumar, Abhimanyu
    Gupta, D. K.
    Martinez, Eulalia
    Singh, Sukhjit
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2018, 330 : 732 - 741
  • [8] Convergence of a Two-Step Iterative Method for Nondifferentiable Operators in Banach Spaces
    Kumar, Abhimanyu
    Gupta, Dharmendra K.
    Martinez, Eulalia
    Singh, Sukhjit
    COMPLEXITY, 2018,
  • [9] Convergence Criteria of a Three-Step Scheme under the Generalized Lipschitz Condition in Banach Spaces
    Saxena, Akanksha
    Jaiswal, Jai Prakash
    Pardasani, Kamal Raj
    Argyros, Ioannis K.
    MATHEMATICS, 2022, 10 (21)
  • [10] Local convergence of a relaxed two-step Newton like method with applications
    I. K. Argyros
    Á. A. Magreñán
    L. Orcos
    J. A. Sicilia
    Journal of Mathematical Chemistry, 2017, 55 : 1427 - 1442