Experimental study on effect of inclination angles to ammonia pulsating heat pipe

被引:36
|
作者
Xue Zhihu [1 ]
Qu Wei [1 ]
机构
[1] CAAA, Beijing 100074, Peoples R China
基金
中国国家自然科学基金;
关键词
Ammonia; Inclination angles; Pulsating heat pipe; Thermal performance; Thermal resistance; VISUALIZATION; PART;
D O I
10.1016/j.cja.2014.08.004
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
In this paper, a novel study on performance of closed loop pulsating heat pipe (CLPHP) using ammonia as working fluid is experimented. The tested CLPHP, consisting of six turns, is fully made of quartz glass tubes with 6 mm outer diameter and 2 mm inner diameter. The filling ratio is 50%. The visualization investigation is conducted to observe the oscillation and circulation flow in the CLPHP. In order to investigate the effects of inclination angles to thermal performance in the ammonia CLPHP, four case tests are studied. The trends of temperature fluctuation and thermal resistance as the input power increases at different inclination angles are highlighted. The results show that it is very easy to start up and circulate for the ammonia CLPHP at an inclining angle. The thermal resistance is low to 0.02 K/W, presenting that heat fluxes can be transferred from heating section to cooling section very quickly. It is found that the thermal resistance decreases as the inclination angle increases. At the horizontal operation, the ammonia CLPHP can be easy to start up at low input power, but hard to circulate. In this case, once the input power is high, the capillary tube in heating section will be burnt out, leading to worse thermal performance with high thermal resistance. (C) 2014 Production and hosting by Elsevier Ltd. on behalf of CSAA & BUAA.
引用
收藏
页码:1122 / 1127
页数:6
相关论文
共 50 条
  • [41] Experimental study of Large-scale cryogenic Pulsating Heat Pipe
    Barba, Maria
    Bruce, Romain
    Bonelli, Antoine
    Baudouy, Bertrand
    ADVANCES IN CRYOGENIC ENGINEERING, 2017, 278
  • [42] Experimental Study on Start-up Characteristics of Pulsating Heat Pipe
    Wang, Xun
    Han, Tong
    Wang, Lei
    Mao, Xinxin
    Yang, Chengsi
    PROGRESS IN POWER AND ELECTRICAL ENGINEERING, PTS 1 AND 2, 2012, 354-355 : 87 - 91
  • [43] AN EXPERIMENTAL STUDY ON A PULSATING HEAT PIPE WITH SELF-REWETTING FLUID
    Fumoto, Koji
    Kawaji, Masahiro
    Kawanami, Tsuyoshi
    2008 SECOND INTERNATIONAL CONFERENCE ON THERMAL ISSUES IN EMERGING TECHNOLOGIES - THEORY AND APPLICATION (THETA), 2008, : 109 - +
  • [44] Experimental study on start-up process of pulsating heat pipe
    Department of Refrigerating and Cryogenic Engineering, Xi'an Jiaotong University, Xi'an 710049, China
    不详
    Hsi An Chiao Tung Ta Hsueh, 2007, 5 (530-533): : 530 - 533
  • [45] Experimental study of pulsating heat pipe with mercury and water as working fluid
    Hu, Jianjun
    Xu, Jinliang
    Huagong Xuebao/Journal of Chemical Industry and Engineering (China), 2008, 59 (05): : 1083 - 1090
  • [46] Experimental and theoretical research on a ammonia pulsating heat pipe: New full visualization of flow pattern and operating mechanism study
    Xue, Zhi Hu
    Qu, Wei
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2017, 106 : 149 - 166
  • [47] Improvement on structure of pulsating heat pipe and experimental study on its characteristic of heat transfer
    Cao, Xiao-Lin
    Zhou, Jin
    Yan, Gang
    Kung Cheng Je Wu Li Hsueh Pao/Journal of Engineering Thermophysics, 2004, 25 (05): : 807 - 809
  • [48] Heat transfer and flow visualization of pulsating heat pipe with silica nanofluid: An experimental study
    Zhang, Dongwei
    He, Zhuantao
    Guan, Jian
    Tang, Songzhen
    Shen, Chao
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2022, 183
  • [49] An experimental investigation on heat transfer performance of pulsating heat pipe
    Fumin Shang
    Shilong Fan
    Qingjing Yang
    Jianhong Liu
    Journal of Mechanical Science and Technology, 2020, 34 : 425 - 433
  • [50] An experimental investigation on heat transfer performance of pulsating heat pipe
    Shang, Fumin
    Fan, Shilong
    Yang, Qingjing
    Liu, Jianhong
    JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY, 2020, 34 (01) : 425 - 433