New results on general observers for nonlinear systems

被引:2
|
作者
Sundarapandian, V [1 ]
机构
[1] SRM Inst Sci & Technol, Dept Instrumentat & Control Engn, Kattankulathur 603203, Tamil Nadu, India
关键词
general observers; exponential observers; nonlinear observers; detectability;
D O I
10.1016/j.am1.2003.07.016
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we establish that detectability is a necessary condition for the existence of general observers (asymptotic or exponential) for nonlinear systems. Using this necessary condition, we show that there does not exist any general observer (asymptotic or exponential), for nonlinear systems with real parametric uncertainty, if the state equilibrium does not change with the parameter values and if the plant output function is purely a function of the state. Next, using center manifold theory, we derive necessary and sufficient conditions for the existence of general exponential observers for Lyapunov stable nonlinear systems. As an application of this result, we show that for the existence of general exponential observers for Lyapunov stable nonlinear systems, the dimension of the state of the general exponential observer should not be less than the number of critical eigenvalues of the linearization matrix of the state dynamics of the plant. (C) 2004 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1421 / 1426
页数:6
相关论文
共 50 条
  • [31] A note on observers for Lipschitz nonlinear systems
    Zhu, FL
    Han, ZZ
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2002, 47 (10) : 1751 - 1754
  • [32] OBSERVERS FOR CLASSES OF NONLINEAR NETWORKED SYSTEMS
    Postoyan, Romain
    Ahmed-Ali, Tarek
    Lamnabhi-Lagarrigue, Francoise
    2009 6TH INTERNATIONAL MULTI-CONFERENCE ON SYSTEMS, SIGNALS AND DEVICES, VOLS 1 AND 2, 2009, : 180 - +
  • [33] Polytopic observers for nonlinear uncertain systems
    Rapaport, A
    Gouzé, JL
    NONLINEAR CONTROL SYSTEMS 2001, VOLS 1-3, 2002, : 995 - 999
  • [34] State observers for nonlinear dynamic systems
    Dong Yali
    PROCEEDINGS OF THE 26TH CHINESE CONTROL CONFERENCE, VOL 2, 2007, : 287 - 291
  • [35] ASYMPTOTIC OBSERVERS FOR NONLINEAR-SYSTEMS
    TORNAMBE, A
    INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 1992, 23 (03) : 435 - 442
  • [36] Observers for Nonlinear Systems, Part 2
    How, Jonathan P.
    IEEE CONTROL SYSTEMS MAGAZINE, 2017, 37 (04): : 5 - 8
  • [37] OBSERVABILITY AND OBSERVERS FOR NONLINEAR-SYSTEMS
    GAUTHIER, JP
    KAZAKOS, D
    RAIRO-AUTOMATIQUE-PRODUCTIQUE INFORMATIQUE INDUSTRIELLE-AUTOMATIC CONTROL PRODUCTION SYSTEMS, 1988, 22 (02): : 201 - 212
  • [38] ON STATE OBSERVERS FOR NONLINEAR-SYSTEMS
    HU, XM
    SYSTEMS & CONTROL LETTERS, 1991, 17 (06) : 465 - 473
  • [39] Embedding for exponential observers of nonlinear systems
    Rapaport, A
    Maloum, A
    PROCEEDINGS OF THE 39TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-5, 2000, : 802 - 803
  • [40] Luenberger observers for nonlinear controlled systems
    Bernard, Pauline
    2017 IEEE 56TH ANNUAL CONFERENCE ON DECISION AND CONTROL (CDC), 2017,