Classifier performance using enhanced resolution SAR data

被引:0
|
作者
Novak, LM [1 ]
Benitz, GR [1 ]
Owirka, GJ [1 ]
Popielarz, JD [1 ]
机构
[1] MIT, Lincoln Lab, Cambridge, MA 02139 USA
来源
RADAR 97 | 1997年 / 449期
关键词
D O I
暂无
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
In support of the DARPA/DARO-sponsored SAIP program [1], MlT Lincoln Laboratory has developed a new, state-of-the-art ATR (automatic target recognition) system that provides significantly improved target recognition performance compared with ATR systems that use conventional synthetic aperture radar (SAR) image processing techniques. This significant improvement is achieved by using a new superresolution image processing technique that enhances SAR image resolution (and image quality) prior to performing target recognition; a template-based classifier is then used to perform target recognition. This paper quantifies the improvement in target recognition performance achieved using superresolution image processing in the ATR system.
引用
收藏
页码:634 / 638
页数:5
相关论文
共 50 条
  • [31] High-Resolution SAR ADC With Enhanced Linearity
    Fan, Hua
    Maloberti, Franco
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2017, 64 (10) : 1142 - 1146
  • [32] Super-resolution for FOPEN SAR data
    Shekarforoush, H
    Banerjee, A
    Chellappa, R
    SIGNAL PROCESSING, SENSOR FUSION, AND TARGET RECOGNITION VIII, 1999, 3720 : 123 - 129
  • [33] Classification in high-resolution SAR data
    Middelmann, W
    Thoennessen, U
    ALGORITHM FOR SYNTHETIC APERTURE RADAR IMAGERY X, 2003, 5095 : 325 - 335
  • [34] Orientation Performance of High Resolution SAR Imagery
    Sheng, Jia
    Yuan, Guoliang
    Hong, Zhonghua
    Zhang, Yun
    2013 IEEE 4TH INTERNATIONAL CONFERENCE ON ELECTRONICS INFORMATION AND EMERGENCY COMMUNICATION (ICEIEC), 2014, : 193 - 196
  • [35] High resolution SAR ATR performance analysis
    Douglas, J
    Burke, M
    Ettinger, G
    ALGORITHMS FOR SYNTHETIC APERTURE RADAR IMAGERY XI, 2004, 5427 : 293 - 301
  • [36] A Novel Hierarchical Ship Classifier for COSMO-SkyMed SAR Data
    Wang, Chao
    Zhang, Hong
    Wu, Fan
    Jiang, Shaofeng
    Zhang, Bo
    Tang, Yixian
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2014, 11 (02) : 484 - 488
  • [37] Heart disease data based privacy preservation using enhanced ElGamal and ResNet classifier
    Charles, V. Benhar
    Surendran, D.
    SureshKumar, A.
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2022, 71
  • [38] Predicting Complications of Cirrhosis using Synthetic Data Generation Enhanced Dynamic Classifier Selection
    Shi, Zixin
    Huang, Linjun
    Wang, Haolin
    2024 IEEE INTERNATIONAL CONFERENCE ON MEDICAL ARTIFICIAL INTELLIGENCE, MEDAI 2024, 2024, : 260 - 267
  • [39] Linking Data Separation, Visual Separation, Classifier Performance Using Multidimensional Projections
    Benato, Barbara C.
    Falcao, Alexandre X.
    Telea, Alexandru C.
    COMPUTER VISION, IMAGING AND COMPUTER GRAPHICS THEORY AND APPLICATIONS, VISIGRAPP 2023, 2024, 2103 : 229 - 255
  • [40] Forest stem volume estimation using high-resolution lidar and SAR data
    Smith, G
    Persson, A
    Holmgren, J
    Hallberg, B
    Fransson, JES
    Ulander, LMH
    IGARSS 2002: IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM AND 24TH CANADIAN SYMPOSIUM ON REMOTE SENSING, VOLS I-VI, PROCEEDINGS: REMOTE SENSING: INTEGRATING OUR VIEW OF THE PLANET, 2002, : 2084 - 2086