Classifier performance using enhanced resolution SAR data

被引:0
|
作者
Novak, LM [1 ]
Benitz, GR [1 ]
Owirka, GJ [1 ]
Popielarz, JD [1 ]
机构
[1] MIT, Lincoln Lab, Cambridge, MA 02139 USA
来源
RADAR 97 | 1997年 / 449期
关键词
D O I
暂无
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
In support of the DARPA/DARO-sponsored SAIP program [1], MlT Lincoln Laboratory has developed a new, state-of-the-art ATR (automatic target recognition) system that provides significantly improved target recognition performance compared with ATR systems that use conventional synthetic aperture radar (SAR) image processing techniques. This significant improvement is achieved by using a new superresolution image processing technique that enhances SAR image resolution (and image quality) prior to performing target recognition; a template-based classifier is then used to perform target recognition. This paper quantifies the improvement in target recognition performance achieved using superresolution image processing in the ATR system.
引用
收藏
页码:634 / 638
页数:5
相关论文
共 50 条
  • [1] Performance of a multi-resolution classifier using enhanced resolution SAR data
    Owirka, GJ
    Weaver, AL
    Novak, LM
    RADAR SENSOR TECHNOLOGY II, 1997, 3066 : 90 - 100
  • [2] ATR performance using enhanced resolution SAR
    Novak, LM
    Benitz, GR
    Owirka, GJ
    Bessette, LA
    ALGORITHMS FOR SYNTHETIC APERTURE RADAR IMAGERY III, 1996, 2757 : 332 - 337
  • [3] Automatic target recognition using enhanced resolution SAR data
    Novak, LM
    Owirka, GJ
    Weaver, AL
    IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 1999, 35 (01) : 157 - 175
  • [4] Automatic target recognition using enhanced resolution SAR data
    Massachusetts Inst of Technology, Lexington, United States
    IEEE Trans Aerosp Electron Syst, 1 (157-175):
  • [5] A CASCADED ENSEMBLE CLASSIFIER FOR OBJECT SEGMENTATION IN HIGH RESOLUTION POLARIMETRIC SAR DATA
    Jaeger, Marc
    Reigber, Andreas
    Hellwich, Olaf
    2014 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2014, : 1029 - 1032
  • [6] Classifier performance for SAR image classification
    Manian, V
    Hernandez, R
    Vásquez, R
    IGARSS 2000: IEEE 2000 INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOL I - VI, PROCEEDINGS, 2000, : 156 - 158
  • [7] Performance analysis of SAR filtering techniques using SVM and Wishart Classifier
    Masurkar, Akhil
    Daruwala, Rohin
    Mohite, Arya
    REMOTE SENSING APPLICATIONS-SOCIETY AND ENVIRONMENT, 2024, 34
  • [8] Enhanced resolution in MIMO-SAR imaging using apodization
    Xu G.
    Liu Y.
    Xu X.
    Xu, Xiaojian (xiaojianxu@buaa.edu.cn), 1600, Beijing University of Aeronautics and Astronautics (BUAA) (43): : 1313 - 1320
  • [9] Performance of built-up area classifications using high-resolution SAR data
    Molch, K.
    Gamba, P.
    Kayitakire, F.
    CANADIAN JOURNAL OF REMOTE SENSING, 2010, 36 (03): : 197 - 210
  • [10] Classifier models for SAR ATR performance prediction
    Scherreik, Matthew
    ALGORITHMS FOR SYNTHETIC APERTURE RADAR IMAGERY XXXI, 2024, 13032