ON MAXIMAL DIAGONALIZABLE LIE SUBALGEBRAS OF THE FIRST HOCHSCHILD COHOMOLOGY

被引:3
|
作者
Le Meur, Patrick [1 ]
机构
[1] UniverSud, CNRS, ENS Cachan, CMLA, F-94230 Cachan, France
关键词
Finite dimensional algebra; Fundamental group; Hochschild cohomology; Representate theory; UNIVERSAL COVER; ALGEBRAS;
D O I
10.1080/00927870902915798
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let A be a basic connected finite dimensional algebra over an algebraically closed field, with ordinary quiver without oriented cycles. Given a presentation of A by quiver and admissible relations, Assem and de la Pena have constructed an embedding of the space of additive characters of the fundamental group of the presentation into the first Hochschild cohomology group of A. We compare the embeddings given by the different presentations of A. In some situations, we characterise the images of these embeddings in terms of ( maximal) diagonalizable subalgebras of the first Hochschild cohomology group ( endowed with its Lie algebra structure).
引用
收藏
页码:1325 / 1340
页数:16
相关论文
共 50 条
  • [21] HOCHSCHILD COHOMOLOGY RING OF A MAXIMAL ORDER OF THE QUATERNION ALGEBRA
    Hayami, Takao
    TSUKUBA JOURNAL OF MATHEMATICS, 2012, 36 (01) : 111 - 120
  • [22] On the first Hochschild cohomology of admissible algebras
    Fang Li
    Dezhan Tan
    Chinese Annals of Mathematics, Series B, 2015, 36 : 1027 - 1042
  • [23] An exact sequence interpretation of the Lie bracket in Hochschild cohomology
    Schwede, S
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1998, 498 : 153 - 172
  • [24] On the first Hochschild cohomology group of an algebra
    de la Peña, JA
    Saorín, M
    MANUSCRIPTA MATHEMATICA, 2001, 104 (04) : 431 - 442
  • [25] On the First Hochschild Cohomology of Admissible Algebras
    Li, Fang
    Tan, Dezhan
    CHINESE ANNALS OF MATHEMATICS SERIES B, 2015, 36 (06) : 1027 - 1042
  • [26] On the first Hochschild cohomology group of an algebra
    José Antonio de la Peña
    Manuel Saorín
    manuscripta mathematica, 2001, 104 : 431 - 442
  • [27] THIN SUBALGEBRAS OF LIE ALGEBRAS OF MAXIMAL CLASS
    Avitabile, M.
    Caranti, A.
    Gavioli, N.
    Monti, V
    Newman, M. F.
    O'Brien, E. A.
    ISRAEL JOURNAL OF MATHEMATICS, 2023, 253 (01) : 101 - 112
  • [28] Leibniz algebras with absolute maximal Lie subalgebras
    Biyogmam, G. R.
    Tcheka, C.
    ALGEBRA AND DISCRETE MATHEMATICS, 2020, 29 (01): : 52 - 65
  • [29] Maximal subalgebras and chief factors of Lie algebras
    Towers, David A.
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2016, 220 (01) : 482 - 493
  • [30] Thin subalgebras of Lie algebras of maximal class
    M. Avitabile
    A. Caranti
    N. Gavioli
    V. Monti
    M. F. Newman
    E. A. O’Brien
    Israel Journal of Mathematics, 2023, 253 : 101 - 112