Let (G,X) be a locally compact transformation group. We characterize when the associated transformation-group C*-algebra C-0 (X) x G has bounded trace. If G acts freely on X, then C-0(X) x G has bounded trace if and only if the action of G on CO(X) is integrable. If G is abelian and the stability subgroups vary continuously, then C-0(X) x G has bounded trace if and only if the action is integrable relative to the stability subgroups. The upper multiplicity of an irreducible representation of C-0 (X) x G is invariant under the dual action of (G) over cap; as an application we identify the largest bounded-trace ideal in Type I transformation-group C*-algebras.
机构:
Penn State Univ, Dept Math, McAllister Bldg, University Pk, PA 16802 USA
Polish Acad Sci, Inst Matemat, Ul Sniadeckich 8, PL-00656 Warsaw, PolandPenn State Univ, Dept Math, McAllister Bldg, University Pk, PA 16802 USA
Baum, Paul F.
De Commer, Kenny
论文数: 0引用数: 0
h-index: 0
机构:
Vrije Univ Brussel, Dept Math, Pl Laan 2, B-1050 Brussels, BelgiumPenn State Univ, Dept Math, McAllister Bldg, University Pk, PA 16802 USA
De Commer, Kenny
Hajac, Piotr M.
论文数: 0引用数: 0
h-index: 0
机构:
Polish Acad Sci, Inst Matemat, Ul Sniadeckich 8, PL-00656 Warsaw, PolandPenn State Univ, Dept Math, McAllister Bldg, University Pk, PA 16802 USA
机构:
LETI - Technologies Avancees, DEIN/SPE/GCO, CEA Saclay
Tokyo Institute of Technology, Tokyo 152-8552, 2-12-1 Ohokayama, Meguro-kuLETI - Technologies Avancees, DEIN/SPE/GCO, CEA Saclay