A new weak Galerkin finite element scheme for general second-order elliptic problems
被引:14
|
作者:
Li, Guanrong
论文数: 0引用数: 0
h-index: 0
机构:
South China Normal Univ, Sch Math Sci, Guangzhou 520631, Guangdong, Peoples R ChinaSouth China Normal Univ, Sch Math Sci, Guangzhou 520631, Guangdong, Peoples R China
Li, Guanrong
[1
]
Chen, Yanping
论文数: 0引用数: 0
h-index: 0
机构:
Xiangtan Univ, Sch Math & Computat Sci, Xiangtan 411105, Hunan, Peoples R ChinaSouth China Normal Univ, Sch Math Sci, Guangzhou 520631, Guangdong, Peoples R China
Chen, Yanping
[2
]
Huang, Yunqing
论文数: 0引用数: 0
h-index: 0
机构:
Xiangtan Univ, Sch Math & Computat Sci, Hunan Key Lab Computat & Simulat Sci & Engn, Xiangtan 411105, Hunan, Peoples R ChinaSouth China Normal Univ, Sch Math Sci, Guangzhou 520631, Guangdong, Peoples R China
Huang, Yunqing
[3
]
机构:
[1] South China Normal Univ, Sch Math Sci, Guangzhou 520631, Guangdong, Peoples R China
[2] Xiangtan Univ, Sch Math & Computat Sci, Xiangtan 411105, Hunan, Peoples R China
[3] Xiangtan Univ, Sch Math & Computat Sci, Hunan Key Lab Computat & Simulat Sci & Engn, Xiangtan 411105, Hunan, Peoples R China
A new weak Galerkin (WG) finite element scheme is presented for general second-order elliptic problems in this paper. In this new scheme, a skew symmetric form has been used for handling the convection term. The advantage of the new scheme is that the system of linear equations from the scheme is positive definite and one might easily get the well-posedness of the system. In this scheme, the WG elements are designed to have the form of (P-k(T), Pk-1(e)). That is, we choose the polynomials of degree k >= 1 on each element and the polynomials of degree k 1 on the edge face of each element. As a result, fewer degrees of freedom are generated in the new WG finite element scheme. It is also worth pointing out that the WG finite element scheme is established on finite element partitions consisting of arbitrary shape of polygons/polyhedra which are shape regular. Optimal-order error estimates are presented for the corresponding numerical approximation in various norms. Some numerical results are reported to confirm the theory. (C) 2018 Elsevier B.V. All rights reserved.
机构:
Jilin Univ, Dept Math, Changchun, Peoples R China
Beijing Computat Sci Res Ctr, Appl & Computat Math Div, Beijing, Peoples R ChinaJilin Univ, Dept Math, Changchun, Peoples R China
Zhang, Qian
Zhang, Ran
论文数: 0引用数: 0
h-index: 0
机构:
Jilin Univ, Dept Math, Changchun, Peoples R ChinaJilin Univ, Dept Math, Changchun, Peoples R China
机构:
Texas A&M Int Univ, Dept Math & Phys, Laredo, TX 78041 USATexas A&M Int Univ, Dept Math & Phys, Laredo, TX 78041 USA
Hussain, Saqib
Wang, Xiaoshen
论文数: 0引用数: 0
h-index: 0
机构:
Univ Arkansas Little Rock, Dept Math & Stat, Little Rock, AR 72204 USATexas A&M Int Univ, Dept Math & Phys, Laredo, TX 78041 USA
Wang, Xiaoshen
Al-Taweel, Ahmed
论文数: 0引用数: 0
h-index: 0
机构:
Univ Arkansas Little Rock, Dept Math & Stat, Little Rock, AR 72204 USA
Univ Al Qadisiyah, Dept Math, Al Diwaniyah, IraqTexas A&M Int Univ, Dept Math & Phys, Laredo, TX 78041 USA
机构:
Univ Arkansas, Dept Math & Stat, Little Rock, AR 72204 USA
Univ Arkansas Pine Bluff, Dept Math & Comp Sci, Pine Bluff, AR 71603 USAUniv Arkansas, Dept Math & Stat, Little Rock, AR 72204 USA
Harris, Anna
Harris, Stephen
论文数: 0引用数: 0
h-index: 0
机构:
Univ Arkansas, Dept Math & Stat, Little Rock, AR 72204 USAUniv Arkansas, Dept Math & Stat, Little Rock, AR 72204 USA