Thermoelectric properties of the novel cubic structured silicon monochalcogenides: A first-principles study

被引:9
|
作者
Ul Haq, Bakhtiar [1 ]
AlFaify, S. [1 ]
Ahmed, R. [2 ,7 ]
Chaudhry, Aijaz Rasool [3 ]
Laref, A. [4 ]
Butt, Faheem K. [5 ]
Alam, Khan [6 ]
机构
[1] King Khalid Univ, Fac Sci, Dept Phys, AFMOL, POB 9004, Abha, Saudi Arabia
[2] Univ Punjab, Ctr High Energy Phys, Quaid E Azam Campus, Lahore 54590, Pakistan
[3] Univ Bisha, Sci Res, POB 551, Bisha 61922, Saudi Arabia
[4] King Saud Univ, Coll Sci, Dept Phys & Astron, Riyadh 11451, Saudi Arabia
[5] Univ Educ, Div Sci & Technol, Dept Phys, Coll Rd, Lahore 54770, Pakistan
[6] Univ Chicago, Inst Mol Engn, Chicago, IL 60615 USA
[7] Univ Teknol Malaysia, Fac Sci, Dept Phys, Skudai 81310, Johor, Malaysia
关键词
Cubic structured Si-monochalcogenides; Thermoelectrics; First -principles approach; Thermoelectric power factors; Electrons and holes doping; IV-VI COMPOUNDS; THERMAL-CONDUCTIVITY; PHONON-SCATTERING; HIGH-PERFORMANCE; BAND-STRUCTURE; SOLAR-CELLS; SNSE; FIGURE; PHASE; MERIT;
D O I
10.1016/j.jallcom.2018.07.325
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The low-cost and non-toxic candidates of the Group-IV monochalcogenide family have attracted significant attention in recent years for large-scale thermoelectric applications. We conduct comprehensive investigations of the thermoelectric response of relatively inexpensive and less toxic cubic structured Si-monochalcogenides (pi-SiS, pi-SiSe, and pi-SiTe) for renewable energy applications. The full-potential linearized-augmented-plus-local-orbital method within density functional theory has been adopted to calculate the ground state energies, whereas the semi-classical Boltzmann transport theory has been used for the calculations of thermoelectric properties. The Si-monochalcogenides in cubic phase demonstrate large values of thermopowers that amounts to 1740.0 mu V/K, 1405.0 mu V/K, and 771.92 mu V/K of the pi-SiS, pi-SiSe, and pi-SiTe respectively at 300 K. The thermopowers show an insignificant response to increase in temperature which is beneficial for the high-temperature thermoelectric applications of these materials. The optimal values of thermoelectric power factors of the cubic structured Si-chalcogenides occur at attainable doping levels and have been originated from the joint contribution of moderate electrical conductivities and thermopowers. These materials demonstrate the figure of merit values approaching unity and have shown a trivial response to the temperature gradient. Moreover, the occurrence of the optimal values of thermoelectric coefficients for electrons doped regime suggests the n-type doping as an easy option for enhancing the thermoelectric performance of these materials. Our investigations show that the Si-monochalcogenides in cubic phase feature interesting thermoelectric performance and can be used as a suitable replacement for the toxic and expensive binary chalcogenides for thermoelectric applications. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:413 / 419
页数:7
相关论文
共 50 条
  • [41] First-principles study of the thermoelectric properties of intermetallic compound YbAl3
    Liang, Jinghua
    Fan, Dengdong
    Jiang, Peiheng
    Liu, Huijun
    Zhao, Wenyu
    INTERMETALLICS, 2017, 87 : 27 - 30
  • [42] Thermoelectric properties of topological insulator lanthanum phosphide via first-principles study
    Zhou, Yu
    Tao, Wang-Li
    Zeng, Zhao-Yi
    Chen, Xiang-Rong
    Chen, Qi-Feng
    JOURNAL OF APPLIED PHYSICS, 2019, 125 (04)
  • [43] Thermoelectric properties of HfN/ScN metal/semiconductor superlattices: a first-principles study
    Saha, Bivas
    Sands, Timothy D.
    Waghmare, Umesh V.
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2012, 24 (41)
  • [44] First-principles study of electronic structure and thermoelectric properties of CeRhAs and related compounds
    Ishii, F
    Onoue, M
    Oguchi, T
    PHYSICA B-CONDENSED MATTER, 2004, 351 (3-4) : 316 - 318
  • [45] First-Principles Study of The Electronic Structure and Thermoelectric Properties of IrN2
    Zhang, Xiao Jing
    Wang, Yuan Xu
    Yan, Yu Li
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2013, 82 (10)
  • [46] First-principles study of elastic, electronic, thermodynamic, and thermoelectric transport properties of TaCoSn
    Haque, Enamul
    Hossain, M. Anwar
    RESULTS IN PHYSICS, 2018, 10 : 458 - 465
  • [47] First-principles study of the structural, optoelectronic and thermophysical properties of the π-SnSe for thermoelectric applications
    Sattar M.A.
    Al Bouzieh N.
    Benkraouda M.
    Amrane N.
    Beilstein Journal of Nanotechnology, 2021, 12 : 1101 - 1114
  • [48] First-principles study of the thermoelectric properties of the two-dimensional halide GeIBr
    Zhang, Ji-Long
    Chang, Wen-Li
    He, Xin-Huan
    Liu, Qing-Chao
    Cui, Long-Fei
    Wang, Tao
    Wei, Xiao-Ping
    Tao, Xiaoma
    PHYSICA SCRIPTA, 2025, 100 (04)
  • [49] First-principles study of the structural, optoelectronic and thermophysical properties of the π-SnSe for thermoelectric applications
    Sattar, Muhammad Atif
    Al Bouzieh, Najwa
    Benkraouda, Maamar
    Amrane, Noureddine
    BEILSTEIN JOURNAL OF NANOTECHNOLOGY, 2021, 12 : 1101 - 1114
  • [50] First-principles investigation of optoelectronic properties of novel SnS2 with a cubic structure
    Zelati, A.
    Taghavimendi, R.
    Bakhshayeshi, A.
    SOLID STATE COMMUNICATIONS, 2021, 333 (333)