Numeric solution of advection-diffusion equations by a discrete time random walk scheme

被引:5
|
作者
Angstmann, Christopher N. [1 ]
Henry, Bruce, I [1 ]
Jacobs, Byron A. [2 ,3 ]
McGann, Anna, V [1 ]
机构
[1] UNSW Australia, Sch Math & Stat, Sydney, NSW, Australia
[2] Univ Witwatersrand, Sch Comp Sci & Appl Math, Johannesburg, South Africa
[3] Univ Witwatersrand, DST NRF Ctr Excellence Math & Stat Sci CoE MaSS, Johannesburg, South Africa
关键词
Burgers' equation; discrete time random walk; numerical methods; FINITE-DIFFERENCE SCHEME; BURGERS-EQUATION; MASTER-EQUATIONS; EXPLICIT; MODELS;
D O I
10.1002/num.22448
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Explicit numerical finite difference schemes for partial differential equations are well known to be easy to implement but they are particularly problematic for solving equations whose solutions admit shocks, blowups, and discontinuities. Here we present an explicit numerical scheme for solving nonlinear advection-diffusion equations admitting shock solutions that is both easy to implement and stable. The numerical scheme is obtained by considering the continuum limit of a discrete time and space stochastic process for nonlinear advection-diffusion. The stochastic process is well posed and this guarantees the stability of the scheme. Several examples are provided to highlight the importance of the formulation of the stochastic process in obtaining a stable and accurate numerical scheme.
引用
收藏
页码:680 / 704
页数:25
相关论文
共 50 条
  • [41] Moments for Tempered Fractional Advection-Diffusion Equations
    Yong Zhang
    Journal of Statistical Physics, 2010, 139 : 915 - 939
  • [42] Multidomain finite elements for advection-diffusion equations
    Trotta, RL
    APPLIED NUMERICAL MATHEMATICS, 1996, 21 (01) : 91 - 118
  • [43] Lie group solutions of advection-diffusion equations
    Sun, Yubiao
    Jayaraman, Amitesh
    Chirikjian, Gregory S.
    PHYSICS OF FLUIDS, 2021, 33 (04)
  • [44] Computational technique for heat and advection-diffusion equations
    Jena, Saumya Ranjan
    Gebremedhin, Guesh Simretab
    SOFT COMPUTING, 2021, 25 (16) : 11139 - 11150
  • [45] A TIME SCHEME FOR THE INTEGRATION OF ADVECTION-DIFFUSION-EQUATIONS
    SCHENK, R
    DAMRATH, U
    ZEITSCHRIFT FUR METEOROLOGIE, 1984, 34 (01): : 22 - 34
  • [46] Multidomain finite elements for advection-diffusion equations
    Universita degli Studi di Trento, Trento, Italy
    Appl Numer Math, 1 (91-118):
  • [47] Biological modeling with nonlocal advection-diffusion equations
    Painter, Kevin J.
    Hillen, Thomas
    Potts, Jonathan R.
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2024, 34 (01): : 57 - 107
  • [48] Moments for Tempered Fractional Advection-Diffusion Equations
    Zhang, Yong
    JOURNAL OF STATISTICAL PHYSICS, 2010, 139 (05) : 915 - 939
  • [49] A Comparison of Closures for Stochastic Advection-Diffusion Equations
    Jarman, K. D.
    Tartakovsky, A. M.
    SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2013, 1 (01): : 319 - 347
  • [50] The solution of two-dimensional advection-diffusion equations via operational matrices
    de la Hoz, Francisco
    Vadillo, Fernando
    APPLIED NUMERICAL MATHEMATICS, 2013, 72 : 172 - 187