The Estimation of Dimensionality In Gene Expression Data using Nonnegative Matrix Factorization

被引:0
|
作者
Kelton, Conor J. [1 ]
Lee, Waishing [2 ]
Rusay, Matthew [1 ]
Maxian, Ondrej [1 ]
Fertig, Elana J. [2 ]
Ochs, Michael F. [1 ]
机构
[1] Coll New Jersey, Dept Math & Stat, Ewing, NJ 08628 USA
[2] Johns Hopkins Sch Med, Div Oncol Biostat & Bioinformat, Sidney Kimmel Comprehens Canc Ctr, Baltimore, MD 21205 USA
关键词
MICROARRAY DATA; DECOMPOSITION; DISCOVERY; PROFILES;
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Nonnegative matrix factorization and other decomposition methods have proven to offer significant advantages for the interpretation of genome-wide gene expression data. However, unlike analytic methods, they suffer from instability in the inferred factors or patterns as the dimensionality is changed. We present here two statistics, one mathematical and one biological, that estimate the dimensionality. We show that they provide close though not identical estimates, and that they provide strong evidence for elimination of some potential factorizations.
引用
收藏
页码:1642 / 1649
页数:8
相关论文
共 50 条
  • [31] Document clustering using nonnegative matrix factorization/
    Shahnaz, F
    Berry, MW
    Pauca, VP
    Plemmons, RJ
    [J]. INFORMATION PROCESSING & MANAGEMENT, 2006, 42 (02) : 373 - 386
  • [32] Data Analysis on Train Transportation Data with Nonnegative Matrix Factorization
    Ito, Kyoichi
    Ito, Masaki
    Miyazaki, Kosuke
    Tanimoto, Keishi
    Sezaki, Kaoru
    [J]. 2017 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2017, : 4080 - 4085
  • [33] Anomaly detection using nonnegative matrix factorization
    Allan, Edward G.
    Horvath, Michael R.
    Kopek, Christopher V.
    Lamb, Brian T.
    Whaples, Thomas S.
    Berry, Michael W.
    [J]. SURVEY OF TEXT MINING II: CLUSTERING, CLASSIFICATION, AND RETRIEVAL, 2008, : 203 - +
  • [34] Gene selection and cancer classification using Monte Carlo and nonnegative matrix factorization
    Chen, Jing
    Ma, Qin
    Hu, Xiaoyan
    Zhang, Miao
    Qin, Dongdong
    Lu, Xiaoquan
    [J]. RSC ADVANCES, 2016, 6 (46) : 39652 - 39656
  • [35] Community discovery using nonnegative matrix factorization
    Wang, Fei
    Li, Tao
    Wang, Xin
    Zhu, Shenghuo
    Ding, Chris
    [J]. DATA MINING AND KNOWLEDGE DISCOVERY, 2011, 22 (03) : 493 - 521
  • [36] Using underapproximations for sparse nonnegative matrix factorization
    Gillis, Nicolas
    Glineur, Francois
    [J]. PATTERN RECOGNITION, 2010, 43 (04) : 1676 - 1687
  • [37] Community discovery using nonnegative matrix factorization
    Fei Wang
    Tao Li
    Xin Wang
    Shenghuo Zhu
    Chris Ding
    [J]. Data Mining and Knowledge Discovery, 2011, 22 : 493 - 521
  • [38] Stable Biclustering of Gene Expression Data with Nonnegative Matrix Factorizations
    Badea, Liviu
    Tilivea, Doina
    [J]. 20TH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2007, : 2651 - 2656
  • [39] Semi-supervised Nonnegative Matrix Factorization for gene expression deconvolution: A case study
    Gaujoux, Renaud
    Seoighe, Cathal
    [J]. INFECTION GENETICS AND EVOLUTION, 2012, 12 (05) : 913 - 921
  • [40] Uncoupled Nonnegative Matrix Factorization with Pairwise Comparison Data
    Kohjima, Masahiro
    [J]. PROCEEDINGS OF THE 2022 ACM SIGIR INTERNATIONAL CONFERENCE ON THE THEORY OF INFORMATION RETRIEVAL, ICTIR 2022, 2022, : 2 - 6