Future antiviral polymers by plasma processing

被引:29
|
作者
Ma, Chuanlong [1 ]
Nikiforov, Anton [1 ]
De Geyter, Nathalie [1 ]
Dai, Xiaofeng [2 ,3 ]
Morent, Rino [1 ]
Ostrikov, Kostya [4 ,5 ]
机构
[1] Univ Ghent, Dept Appl Phys, Res Unit Plasma Technol RUPT, Sint Pietersnieuwstr 41, B-9000 Ghent, Belgium
[2] Xi An Jiao Tong Univ, Affiliated Hosp, Xian 710061, Peoples R China
[3] Jiangnan Univ, Wuxi Sch Med, Wuxi 214122, Jiangsu, Peoples R China
[4] Queensland Univ Technol QUT, Sch Chem & Phys, Brisbane, Qld 4000, Australia
[5] Queensland Univ Technol QUT, QUT Ctr Mat Sci, Brisbane, Qld 4000, Australia
基金
澳大利亚研究理事会; 中国国家自然科学基金;
关键词
Antiviral polymers; surface modification; plasma processing; ATMOSPHERIC-PRESSURE PLASMA; ACUTE RESPIRATORY SYNDROME; CONTROLLED DRUG-RELEASE; CORONAVIRUS MERS-COV; SURFACE-MODIFICATION; NITRIC-OXIDE; ANTIBACTERIAL SURFACES; COVALENT IMMOBILIZATION; INFLUENZA-VIRUS; NANOPARTICLES;
D O I
10.1016/j.progpolymsci.2021.101410
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Coronavirus disease 2019 (COVID-19) is largely threatening global public health, social stability, and econ-omy. Effort s of the scientific community are turning to this global crisis and should present future pre-ventative measures. With recent trends in polymer science that use plasma to activate and enhance the functionalities of polymer surfaces by surface etching, surface grafting, coating and activation combined with recent advances in understanding polymer-virus interactions at the nanoscale, it is promising to employ advanced plasma processing for smart antiviral applications. This trend article highlights the in-novative and emerging directions and approaches in plasma-based surface engineering to create antiviral polymers. After introducing the unique features of plasma processing of polymers, novel plasma strategies that can be applied to engineer polymers with antiviral properties are presented and critically evaluated. The challenges and future perspectives of exploiting the unique plasma-specific effects to engineer smart polymers with virus-capture, virus-detection, virus-repelling, and/or virus-inactivation functionalities for biomedical applications are analysed and discussed. (c) 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license ( http://creativecommons.org/licenses/by-nc-nd/4.0/ )
引用
收藏
页数:14
相关论文
共 50 条
  • [21] The future of antiviral immunotoxins
    Spiess, Katja
    Jakobsen, Mette Hoy
    Kledal, Thomas N.
    Rosenkilde, Mette M.
    JOURNAL OF LEUKOCYTE BIOLOGY, 2016, 99 (06) : 911 - 925
  • [22] THE FUTURE OF ANTIVIRAL CHEMOTHERAPY
    CROWE, S
    MILLS, J
    DERMATOLOGIC CLINICS, 1988, 6 (04) : 521 - 537
  • [23] Laser-plasma EUV source dedicated for surface processing of polymers
    Bartnik, A.
    Fiedorowicz, H.
    Jarocki, R.
    Kostecki, J.
    Szczurek, M.
    Wachulak, P. W.
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2011, 647 (01): : 125 - 131
  • [24] On plasma processing of polymers and the stability of the surface properties for enhanced adhesion to metals
    Arefi-Khonsari, F
    Kurdi, J
    Tatoulian, M
    Amouroux, J
    SURFACE & COATINGS TECHNOLOGY, 2001, 142 : 437 - 448
  • [25] Carrent status and future vision of high density plasma processing
    Hori, Masaru
    Seimitsu Kogaku Kaishi/Journal of the Japan Society for Precision Engineering, 2007, 73 (09): : 971 - 974
  • [26] Organotin polymers as anticancer and antiviral agents
    Carraher, Charles E., Jr.
    Roner, Michael R.
    JOURNAL OF ORGANOMETALLIC CHEMISTRY, 2014, 751 : 67 - 82
  • [27] Antiviral Application of Carbohydrate Polymers: A Review
    Kar, Biswakanth
    Pradhan, Deepak
    Halder, Jitu
    Rai, Vineet Kumar
    Ghosh, Goutam
    Rath, Goutam
    CURRENT PHARMACEUTICAL DESIGN, 2023, 29 (18) : 1441 - 1458
  • [28] POLYMERS OF FUTURE
    MORTON, M
    RUBBER AGE, 1967, 99 (05): : 84 - &
  • [29] Polymers for the future
    Arzhakova, Olga, V
    Arzhakov, Maxim S.
    Badamshina, Elmira R.
    Bryuzgina, Ekaterina B.
    Bryuzgin, Evgeny, V
    Bystrova, Aleksandra, V
    Vaganov, Gleb V.
    Vasilevskaya, Valentina V.
    Vdovichenko, Artem Yu
    Gallyamov, Marat O.
    Gumerov, Rustam A.
    Didenko, Andrey L.
    Zefirov, Vadim V.
    Karpov, Sergei, V
    Komarov, Pavel, V
    Kulichikhin, Valery G.
    Kurochkin, Sergei A.
    Larin, Sergey, V
    Malkin, Alexander Ya
    Milenin, Sergey A.
    Muzafarov, Aziz M.
    Molchanov, Vyacheslav S.
    Navrotskiy, Alexander, V
    Novakov, Ivan A.
    Panarin, Evgenii F.
    Panova, Irina G.
    Potemkin, Igor I.
    Svetlichny, Valentin M.
    Sedush, Nikita G.
    Serenko, Olga A.
    Uspenskii, Sergey A.
    Philippova, Olga E.
    Khokhlov, Alexei R.
    Chvalun, Sergei N.
    Sheiko, Sergei S.
    Shibaev, Andrey, V
    Elmanovich, Igor, V
    Yudin, Vladimir E.
    Yakimansky, Alexander, V
    Yaroslavov, Alexander A.
    RUSSIAN CHEMICAL REVIEWS, 2022, 91 (12)
  • [30] Polymers for the Future
    Hartmann, Laura
    Staffilani, Mara
    Unterlass, Miriam M.
    MACROMOLECULAR CHEMISTRY AND PHYSICS, 2020, 221 (07)