Reduced graphene oxide and Fe2(MoO4)3 composite for sodium-ion batteries cathode with improved performance

被引:20
|
作者
Niu, Yubin [1 ,2 ]
Xu, Maowen [1 ,2 ]
机构
[1] Southwest Univ, Inst Clean Energy & Adv Mat, Fac Mat & Energy, Chongqing 400715, Peoples R China
[2] Chongqing Key Lab Adv Mat & Technol Clean Energie, Chongqing 400715, Peoples R China
关键词
Fe-2(MoO4)(3); Graphene oxide; Sodium-ion batteries; Hydrothermal; ELECTROCHEMICAL PERFORMANCE; ELECTRODE MATERIAL; HIGH-CAPACITY; NA3V2(PO4)(3); P2-TYPE; INTERCALATION; NANOWIRES; MECHANISM; INSERTION; FILM;
D O I
10.1016/j.jallcom.2016.02.223
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Fe-2(MoO4)(3)@reduced graphene oxide (FMO@rGO) composite have been synthesized by precipitation-hydrothermal method. Herein, the graphene oxide in the present synthesis acts not only as baffles between particle and particle that helps to prevent the increase of particle size, but also as conductive networks after hydrothermal treatment, providing high electronic conductivity between particle and particle. The special surface area of the as-prepared materials significantly increases from 19.738 m(2) g(-1) (FMO) to 51.401 m(2) g(-1) (FMO@rGO), which undoubtedly provide more interface area between the active materials and the electrolyte. As a cathode material for sodium-ion batteries, the FMO@rGO composite delivers high discharge capacity at 0.5 C, which is comparable to theoretical capacity and literatures, and impressive rate performance. As the current density is at 5 C, for the first time, the initial specific capacity of FMO@rGO composite is about 68.2 mAh g(-1), and it remains 56.5 mAh g(-1) after 100 cycles, of which the excellent electrochemical performance is mainly attributed to good conductivity, high specific surface area and significantly enhanced diffusion coefficient. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:392 / 398
页数:7
相关论文
共 50 条
  • [21] Prussian White/Reduced Graphene Oxide Composite as Cathode Material to Enhance the Electrochemical Performance of Sodium-Ion Battery
    Jia, Si
    Liao, Kaisi
    Zhou, Mingjiong
    Xin, Xing
    Luo, Yunjie
    Cheng, Ya-Jun
    Liu, Rui
    Yan, Xufeng
    Lee, Jonghee
    Papovic, Snezana
    Zheng, Kun
    Swierczek, Konrad
    LANGMUIR, 2024, 40 (39) : 20485 - 20494
  • [22] Prelithiation Activates Fe2(MoO4)3 Cathode for Rechargeable Hybrid Mg2+/Li+ Batteries
    Wang, Nan
    Yuan, Hancheng
    NuLi, Yanna
    Yang, Jun
    Wang, Jiulin
    ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (44) : 38455 - 38466
  • [23] Partially Reduced Holey Graphene Oxide as High Performance Anode for Sodium-Ion Batteries
    Zhao, Jin
    Zhang, Yi-Zhou
    Zhang, Fan
    Liang, Hanfeng
    Ming, Fangwang
    Alshareef, Husam N.
    Gao, Zhiqiang
    ADVANCED ENERGY MATERIALS, 2019, 9 (07)
  • [24] Reduced Graphene Oxide-Wrapped FeS2 Composite as Anode for High-Performance Sodium-Ion Batteries
    Qinghong Wang
    Can Guo
    Yuxuan Zhu
    Jiapeng He
    Hongqiang Wang
    Nano-Micro Letters, 2018, 10
  • [25] Reduced Graphene Oxide-Wrapped FeS2 Composite as Anode for High-Performance Sodium-Ion Batteries
    Qinghong Wang
    Can Guo
    Yuxuan Zhu
    Jiapeng He
    Hongqiang Wang
    Nano-Micro Letters, 2018, 10 (02) : 126 - 134
  • [26] Reduced Graphene Oxide-Wrapped FeS2 Composite as Anode for High-Performance Sodium-Ion Batteries
    Wang, Qinghong
    Guo, Can
    Zhu, Yuxuan
    He, Jiapeng
    Wang, Hongqiang
    NANO-MICRO LETTERS, 2018, 10 (02)
  • [27] CARBOTHERMIC REDUCTION OF FERRIMOLYBDATE, FE2(MOO4)3
    TERRY, BS
    AZUBIKE, DC
    TRANSACTIONS OF THE INSTITUTION OF MINING AND METALLURGY SECTION C-MINERAL PROCESSING AND EXTRACTIVE METALLURGY, 1990, 99 : C163 - C166
  • [28] HYDROTHERMAL SYNTHESIS OF CRYSTALS OF FE2(MOO4)3
    KLEVTSOV, PV
    SOVIET PHYSICS CRYSTALLOGRAPHY, USSR, 1965, 10 (03): : 370 - &
  • [29] FE2(MOO4)3-MNMOO4 SYSTEMS
    GETMAN, EI
    MARCHENKO, VI
    ZHURNAL NEORGANICHESKOI KHIMII, 1985, 30 (05): : 1351 - 1353
  • [30] Composite of few-layer MoO3 nanosheets with graphene as a high performance anode for sodium-ion batteries
    Sreedhara, M. B.
    Santhosha, A. L.
    Bhattacharyya, Aninda J.
    Rao, C. N. R.
    JOURNAL OF MATERIALS CHEMISTRY A, 2016, 4 (24) : 9466 - 9471