Interpolation Theorems for Nonlinear Operators in General Morrey-Type Spaces and Their Applications

被引:0
|
作者
Burenkov, V., I [1 ,2 ]
Nursultanov, E. D. [3 ,4 ]
机构
[1] RUDN Univ, SM Nikolskii Math Inst, Ul Miklukho Maklaya 6, Moscow 117198, Russia
[2] Russian Acad Sci, Steklov Math Inst, Ul Gubkina 8, Moscow 119991, Russia
[3] Lomonosov Moscow State Univ, Kazakhstan Branch, Kazhymukan Str 11, Nur Sultan 010010, Kazakhstan
[4] Minist Educ & Sci Republ Kazakhstan, Inst Math & Math Modeling, Pushkina Str 125, Alma Ata 050010, Kazakhstan
基金
俄罗斯科学基金会;
关键词
SUFFICIENT CONDITIONS; MAXIMAL OPERATOR; BOUNDEDNESS;
D O I
10.1134/S0081543821010077
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove new interpolation theorems for a sufficiently wide class of nonlinear operators in Morrey-type spaces. In particular, these theorems apply to Urysohn integral operators. We also obtain analogs of the Marcinkiewicz-Calderon and Stein-Weiss-Peetre interpolation theorems and establish a criterion of (p, q) quasiweak boundedness of the Urysohn operator.
引用
收藏
页码:124 / 149
页数:26
相关论文
共 50 条
  • [21] On boundedness of the fractional maximal operator from complementary Morrey-type spaces to Morrey-type spaces
    Burenkov, V. I.
    Guliyev, H. V.
    Guliyev, V. S.
    INTERACTION OF ANALYSIS AND GEOMETRY, 2007, 424 : 17 - +
  • [22] COMMENTS ON DEFINITIONS OF GENERAL LOCAL AND GLOBAL MORREY-TYPE SPACES
    Tararykova, T. V.
    EURASIAN MATHEMATICAL JOURNAL, 2013, 4 (01): : 125 - 134
  • [23] OPERATORS IN MORREY TYPE SPACES AND APPLICATIONS
    Ragusa, M. A.
    EURASIAN MATHEMATICAL JOURNAL, 2012, 3 (03): : 94 - 109
  • [24] Sharp constants for multilinear Hausdorff operators on local Morrey-type spaces
    An, Na
    Wei, Mingquan
    Zhao, Fayou
    FORUM MATHEMATICUM, 2023, 35 (04) : 1133 - 1154
  • [25] Sharp estimates for Hausdorff operators on complementary local Morrey-type spaces
    Wei, Mingquan
    Liu, Xiaoyu
    Yan, Dunyan
    BULLETIN DES SCIENCES MATHEMATIQUES, 2025, 201
  • [26] Integral operators commuting with dilations and rotations in generalized Morrey-type spaces
    Samko, Natasha
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2020, 43 (16) : 9416 - 9434
  • [27] Dual spaces of local Morrey-type spaces
    Amiran Gogatishvili
    Rza Mustafayev
    Czechoslovak Mathematical Journal, 2011, 61 : 609 - 622
  • [28] DUAL SPACES OF LOCAL MORREY-TYPE SPACES
    Gogatishvili, Amiran
    Mustafayev, Rza
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2011, 61 (03) : 609 - 622
  • [29] Decompositions of local Morrey-type spaces
    Guliyev, Vagif S.
    Hasanov, Sabir G.
    Sawano, Yoshihiro
    POSITIVITY, 2017, 21 (03) : 1223 - 1252
  • [30] Decompositions of local Morrey-type spaces
    Vagif S. Guliyev
    Sabir G. Hasanov
    Yoshihiro Sawano
    Positivity, 2017, 21 : 1223 - 1252