Orbit equivalence of Cantor minimal systems: A survey and a new proof

被引:8
|
作者
Putnam, Ian F. [1 ]
机构
[1] Univ Victoria, Dept Math & Stat, Victoria, BC V8W 3R4, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
ABSORPTION THEOREM; HOMEOMORPHISMS; DIMENSION; ALGEBRAS; SET;
D O I
10.1016/j.exmath.2009.06.002
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give a new proof of the classification, up to topological orbit equivalence, of minimal AF-equivalence relations and minimal actions of the group of integers on the Cantor set. This proof relies heavily on the structure of AF-equivalence relations and the theory of dimension groups; we give a short survey of these topics. (C) 2009 Elsevier GmbH. All rights reserved.
引用
收藏
页码:101 / 131
页数:31
相关论文
共 50 条
  • [21] ENTROPY VERSUS ORBIT EQUIVALENCE FOR MINIMAL HOMEOMORPHISMS
    BOYLE, M
    HANDELMAN, D
    PACIFIC JOURNAL OF MATHEMATICS, 1994, 164 (01) : 1 - 13
  • [22] Full groups of Cantor minimal systems
    Giordano, T
    Putnam, IF
    Skau, CF
    ISRAEL JOURNAL OF MATHEMATICS, 1999, 111 (1) : 285 - 320
  • [23] Full groups of Cantor minimal systems
    Thierry Giordano
    Ian F. Putnam
    Christian F. Skau
    Israel Journal of Mathematics, 1999, 111 : 285 - 320
  • [24] Minimal Cantor systems and unimodal maps
    Bruin, H
    JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2003, 9 (3-4) : 305 - 318
  • [25] All minimal Cantor systems are slow
    Boronski, Jan P.
    Kupka, Jiri
    Oprocha, Piotr
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2019, 51 (06) : 937 - 944
  • [26] Real coboundaries for minimal Cantor systems
    Ormes, NS
    PACIFIC JOURNAL OF MATHEMATICS, 2000, 195 (02) : 453 - 476
  • [27] Topological speedups for minimal Cantor systems
    Ash, Drew D.
    Ormes, Nicholas S.
    ISRAEL JOURNAL OF MATHEMATICS, 2024, 261 (01) : 91 - 126
  • [28] Continuous Orbit Equivalence for Automorphism Systems of Equivalence Relations
    Qiang, Xiangqi
    Hou, Chengjun
    TAIWANESE JOURNAL OF MATHEMATICS, 2024, 28 (01): : 95 - 124
  • [29] New Exotic Minimal Sets from Pseudo-Suspensions of Cantor Systems
    Jan P. Boroński
    Alex Clark
    Piotr Oprocha
    Journal of Dynamics and Differential Equations, 2023, 35 : 1175 - 1201
  • [30] New Exotic Minimal Sets from Pseudo-Suspensions of Cantor Systems
    Boronski, Jan P.
    Clark, Alex
    Oprocha, Piotr
    JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2023, 35 (02) : 1175 - 1201