Classifying the content of social media images to support cultural ecosystem service assessments using deep learning models

被引:25
|
作者
Cardoso, Ana Sofia [1 ,2 ,3 ]
Renna, Francesco [4 ]
Moreno-Llorca, Ricardo [5 ]
Alcaraz-Segura, Domingo [5 ,6 ,7 ]
Tabik, Siham [8 ,9 ]
Ladle, Richard J. [1 ,2 ,3 ,10 ]
Sofia Vaz, Ana [1 ,2 ,3 ]
机构
[1] CIBIO, Ctr Invest Biodiversidade Recursos Gen, InBIO Lab Associado, Campus Vairao, P-4485661 Porto, Portugal
[2] Univ Porto, Dept Biol, Fac Ciencias, P-4099002 Porto, Portugal
[3] CIBIO, BIOPOLIS Program Genom, Biodivers & Land Planning, Campus Vairao, P-4485661 Vairao, Portugal
[4] Univ Porto, Inst Telecomunicacoes, Fac Ciencias, Rua Campo Alegre, Porto, Portugal
[5] Univ Granada, Andalusian Inter Univ Inst Earth Syst Res IISTA, iEcolab, Avda Mediterraneo S N, Granada 18006, Spain
[6] Univ Granada, Fac Ciencias, Dpto Botan, Av Fuentenueva S N, Granada 18003, Spain
[7] Univ Almeria, Andalusian Ctr Assessment & Monitoring Global, Crta San Urbano S-N, Almeria 04120, Spain
[8] Univ Granada, Andalusian Res Inst Data Sci & Computat Intellige, Granada 18071, Spain
[9] Univ Granada, Andalusian Res Inst Data Sci & Computat Intellige, Dept Comp Sci & Artificial Intelligence, DaSCI, Granada 18071, Spain
[10] Univ Fed Alagoas, Inst Biol Sci & Hlth, Maceio, Alagoas, Brazil
关键词
Computer vision; Convolutional neural networks; Culturomics; iEcology; Nature contributions to people; Transfer learning; PROTECTED AREA; CONSERVATION; IDENTIFICATION; PERCEPTIONS; BUTTERFLIES; FRAMEWORK;
D O I
10.1016/j.ecoser.2022.101410
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
Crowdsourced social media data has become popular for assessing cultural ecosystem services (CES). Nevertheless, social media data analyses in the context of CES can be time consuming and costly, particularly when based on the manual classification of images or texts shared by people. The potential of deep learning for automating the analysis of crowdsourced social media content is still being explored in CES research. Here, we use freely available deep learning models, i.e., Convolutional Neural Networks, for automating the classification of natural and human (e.g., species and human structures) elements relevant to CES from Flickr and Wikiloc images. Our approach is developed for Peneda-Ger <^>es (Portugal) and then applied to Sierra Nevada (Spain). For Peneda-Ger <^>es, image classification showed promising results (F1-score ca. 80%), highlighting a preference for aesthetics appreciation by social media users. In Sierra Nevada, even though model performance decreased, it was still satisfactory (F1-score ca. 60%), indicating a predominance of people's pursuit for cultural heritage and spiritual enrichment. Our study shows great potential from deep learning to assist in the automated classification of human-nature interactions and elements from social media content and, by extension, for supporting researchers and stakeholders to decode CES distributions, benefits, and values.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Aggression Detection in Social Media from Textual Data Using Deep Learning Models
    Khan, Umair
    Khan, Salabat
    Rizwan, Atif
    Atteia, Ghada
    Jamjoom, Mona M.
    Samee, Nagwan Abdel
    [J]. APPLIED SCIENCES-BASEL, 2022, 12 (10):
  • [32] Sentiment analysis of multi social media using machine and deep learning models: a review
    Vasanthi, P.
    Madhu Viswanatham, V.
    [J]. Multimedia Tools and Applications, 2024, 83 (42) : 90033 - 90051
  • [33] Classifying shoulder implants in X-ray images using deep learning
    Urban, Gregor
    Porhemmat, Saman
    Stark, Maya
    Feeley, Brian
    Okada, Kazunori
    Baldi, Pierre
    [J]. COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL, 2020, 18 : 967 - 972
  • [34] Automatic Association of Social Media Images with Emotions Using Deep Learning-Based Features
    Katsurai, Marie
    Sanjo, Satoshi
    [J]. INTERNATIONAL JOURNAL OF PSYCHOLOGY, 2016, 51 : 546 - 546
  • [35] Social media and deep learning reveal specific cultural preferences for biodiversity
    Havinga, Ilan
    Marcos, Diego
    Bogaart, Patrick
    Massimino, Dario
    Hein, Lars
    Tuia, Devis
    [J]. PEOPLE AND NATURE, 2023, 5 (03) : 981 - 998
  • [36] Deep Attentive Multimodal Network Representation Learning for Social Media Images
    Huang, Feiran
    Li, Chaozhuo
    Gao, Boyu
    Liu, Yun
    Alotaibi, Sattam
    Chen, Hao
    [J]. ACM TRANSACTIONS ON INTERNET TECHNOLOGY, 2021, 21 (03)
  • [37] Classifying breast cancer using transfer learning models based on histopathological images
    Rana, Meghavi
    Bhushan, Megha
    [J]. NEURAL COMPUTING & APPLICATIONS, 2023, 35 (19): : 14243 - 14257
  • [38] Classifying breast cancer using transfer learning models based on histopathological images
    Meghavi Rana
    Megha Bhushan
    [J]. Neural Computing and Applications, 2023, 35 : 14243 - 14257
  • [39] Using social media to support small group learning
    Duncan Cole
    Emma Rengasamy
    Shafqat Batchelor
    Charles Pope
    Stephen Riley
    Anne Marie Cunningham
    [J]. BMC Medical Education, 17
  • [40] Using social media to support small group learning
    Cole, Duncan
    Rengasamy, Emma
    Batchelor, Shafqat
    Pope, Charles
    Riley, Stephen
    Cunningham, Anne Marie
    [J]. BMC MEDICAL EDUCATION, 2017, 17