Classifying the content of social media images to support cultural ecosystem service assessments using deep learning models

被引:25
|
作者
Cardoso, Ana Sofia [1 ,2 ,3 ]
Renna, Francesco [4 ]
Moreno-Llorca, Ricardo [5 ]
Alcaraz-Segura, Domingo [5 ,6 ,7 ]
Tabik, Siham [8 ,9 ]
Ladle, Richard J. [1 ,2 ,3 ,10 ]
Sofia Vaz, Ana [1 ,2 ,3 ]
机构
[1] CIBIO, Ctr Invest Biodiversidade Recursos Gen, InBIO Lab Associado, Campus Vairao, P-4485661 Porto, Portugal
[2] Univ Porto, Dept Biol, Fac Ciencias, P-4099002 Porto, Portugal
[3] CIBIO, BIOPOLIS Program Genom, Biodivers & Land Planning, Campus Vairao, P-4485661 Vairao, Portugal
[4] Univ Porto, Inst Telecomunicacoes, Fac Ciencias, Rua Campo Alegre, Porto, Portugal
[5] Univ Granada, Andalusian Inter Univ Inst Earth Syst Res IISTA, iEcolab, Avda Mediterraneo S N, Granada 18006, Spain
[6] Univ Granada, Fac Ciencias, Dpto Botan, Av Fuentenueva S N, Granada 18003, Spain
[7] Univ Almeria, Andalusian Ctr Assessment & Monitoring Global, Crta San Urbano S-N, Almeria 04120, Spain
[8] Univ Granada, Andalusian Res Inst Data Sci & Computat Intellige, Granada 18071, Spain
[9] Univ Granada, Andalusian Res Inst Data Sci & Computat Intellige, Dept Comp Sci & Artificial Intelligence, DaSCI, Granada 18071, Spain
[10] Univ Fed Alagoas, Inst Biol Sci & Hlth, Maceio, Alagoas, Brazil
关键词
Computer vision; Convolutional neural networks; Culturomics; iEcology; Nature contributions to people; Transfer learning; PROTECTED AREA; CONSERVATION; IDENTIFICATION; PERCEPTIONS; BUTTERFLIES; FRAMEWORK;
D O I
10.1016/j.ecoser.2022.101410
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
Crowdsourced social media data has become popular for assessing cultural ecosystem services (CES). Nevertheless, social media data analyses in the context of CES can be time consuming and costly, particularly when based on the manual classification of images or texts shared by people. The potential of deep learning for automating the analysis of crowdsourced social media content is still being explored in CES research. Here, we use freely available deep learning models, i.e., Convolutional Neural Networks, for automating the classification of natural and human (e.g., species and human structures) elements relevant to CES from Flickr and Wikiloc images. Our approach is developed for Peneda-Ger <^>es (Portugal) and then applied to Sierra Nevada (Spain). For Peneda-Ger <^>es, image classification showed promising results (F1-score ca. 80%), highlighting a preference for aesthetics appreciation by social media users. In Sierra Nevada, even though model performance decreased, it was still satisfactory (F1-score ca. 60%), indicating a predominance of people's pursuit for cultural heritage and spiritual enrichment. Our study shows great potential from deep learning to assist in the automated classification of human-nature interactions and elements from social media content and, by extension, for supporting researchers and stakeholders to decode CES distributions, benefits, and values.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Harnessing artificial intelligence technology and social media data to support Cultural Ecosystem Service assessments
    Vigl, Lukas Egarter
    Marsoner, Thomas
    Giombini, Valentina
    Pecher, Caroline
    Simion, Heidi
    Stemle, Egon
    Tasser, Erich
    Depellegrin, Daniel
    [J]. PEOPLE AND NATURE, 2021, 3 (03) : 673 - 685
  • [2] Classifying and Mapping Cultural Ecosystem Services Using Artificial Intelligence and Social Media Data
    Mouttaki, Ikram
    Bagdanaviciute, Ingrida
    Maanan, Mohamed
    Erraiss, Mohammed
    Rhinane, Hassan
    Maanan, Mehdi
    [J]. WETLANDS, 2022, 42 (07)
  • [3] Classifying and Mapping Cultural Ecosystem Services Using Artificial Intelligence and Social Media Data
    Ikram Mouttaki
    Ingrida Bagdanavičiūtė
    Mohamed Maanan
    Mohammed Erraiss
    Hassan Rhinane
    Mehdi Maanan
    [J]. Wetlands, 2022, 42
  • [4] Analyzing the Attractiveness of Food Images Using an Ensemble of Deep Learning Models Trained via Social Media Images
    Morinaga, Tanyaboon
    Patanukhom, Karn
    Somchit, Yuthapong
    [J]. BIG DATA AND COGNITIVE COMPUTING, 2024, 8 (06)
  • [5] Classifying Tongue Images using Deep Transfer Learning
    Song, Chao
    Wang, Bin
    Xu, Jiatuo
    [J]. 2020 5TH INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND APPLICATIONS (ICCIA 2020), 2020, : 103 - 107
  • [6] Recognizing military vehicles in social media images using deep learning
    Hiippala, Tuomo
    [J]. 2017 IEEE INTERNATIONAL CONFERENCE ON INTELLIGENCE AND SECURITY INFORMATICS (ISI), 2017, : 60 - 65
  • [7] Applying deep learning on social media to investigate cultural ecosystem services in protected areas worldwide
    Yee, Timothy Bing Lun
    Carrasco, L. Roman
    [J]. SCIENTIFIC REPORTS, 2024, 14 (01):
  • [8] Understanding the sentiment associated with cultural ecosystem services using images and text from social media
    Havinga, Ilan
    Marcos, Diego
    Bogaart, Patrick
    Tuia, Devis
    Hein, Lars
    [J]. ECOSYSTEM SERVICES, 2024, 65
  • [9] Using ecosystem service assessments to support participatory marine spatial planning
    Friedrich, Laura A.
    Glegg, Gillian
    Fletcher, Stephen
    Dodds, Wendy
    Philippe, Manuelle
    Bailly, Denis
    [J]. OCEAN & COASTAL MANAGEMENT, 2020, 188
  • [10] Convoluted Cosmos: Classifying Galaxy Images Using Deep Learning
    Misra, Diganta
    Mohanty, Sachi Nandan
    Agarwal, Mohit
    Gupta, Suneet K.
    [J]. DATA MANAGEMENT, ANALYTICS AND INNOVATION, ICDMAI 2019, VOL 1, 2020, 1042 : 569 - 579