On the dynamics of a five-order fuzzy difference equation

被引:19
|
作者
Wang, Changyou [1 ,2 ]
Su, Xiaolin [1 ]
Liu, Ping [1 ]
Hu, Xiaohong [1 ]
Li, Rui [3 ]
机构
[1] Chongqing Univ Posts & Telecommun, Coll Sci, Chongqing 400065, Peoples R China
[2] Chengdu Univ Informat Technol, Sch Appl Math, Chengdu 610225, Sichuan, Peoples R China
[3] Chongqing Univ Posts & Telecommun, Coll Automat, Chongqing 400065, Peoples R China
来源
关键词
Fuzzy difference equation; existence; uniqueness; equilibrium point; asymptotic behavior; BEHAVIOR; SYSTEMS;
D O I
10.22436/jnsa.010.06.40
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Our aim in this paper is to investigate the existence and uniqueness of the positive solutions and the asymptotic behavior of the equilibrium points of the fuzzy difference equation x (n+1) = Ax(n-1)x(n-2)/D + Bx(n-3) + Cx(n-4), n = 0, 1, 2, ... , where x n is a sequence of positive fuzzy numbers, the parameters A, B, C, D and the initial conditions x(-4), x(-3), x(-2), x(-1), x(0) are positive fuzzy numbers. Moreover, some numerical examples to the difference system are given to verify our theoretical results. (C) 2017 All rights reserved.
引用
收藏
页码:3303 / 3319
页数:17
相关论文
共 50 条
  • [31] Regarding the dynamics of a third order nonlinear difference equation
    Memarbashi, Reza
    Ghasemabadi, Atena
    ADVANCES IN DIFFERENCE EQUATIONS, 2012,
  • [32] Dynamics of a higher-order rational difference equation
    Dehghan, Mehdi
    Mazrooei-Sebdani, Reza
    APPLIED MATHEMATICS AND COMPUTATION, 2006, 178 (02) : 345 - 354
  • [33] Dynamics of a high-order rational difference equation
    Wang, Yanqin
    Tu, Qingwei
    Wang, Qiang
    Hu, Chao
    UTILITAS MATHEMATICA, 2012, 88 : 13 - 25
  • [34] Dynamics of a higher order nonlinear rational difference equation
    Su, YH
    Li, WT
    Stevic, S
    JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2005, 11 (02) : 133 - 150
  • [35] Dynamics of a Higher Order Nonlinear Rational Difference Equation
    Atawna, S.
    Ismail, E. S.
    Hashim, I.
    INTERNATIONAL CONFERENCE ON FUNDAMENTAL AND APPLIED SCIENCES 2012 (ICFAS2012), 2012, 1482 : 309 - 314
  • [36] Regarding the dynamics of a third order nonlinear difference equation
    Reza Memarbashi
    Atena Ghasemabadi
    Advances in Difference Equations, 2012
  • [37] Qualitative behavior of a second-order fuzzy difference equation
    Rahman, Ghaus Ur
    Din, Qamar
    Faizullah, Faiz
    Khan, Faiz Muhammad
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2018, 34 (01) : 745 - 753
  • [38] Dynamical behaviors of a k-order fuzzy difference equation
    Han, Caihong
    Li, Lue
    Su, Guangwang
    Sun, Taixiang
    OPEN MATHEMATICS, 2022, 20 (01): : 391 - 403
  • [39] Periodicity of A Four-order Maximum Fuzzy Difference Equation
    Wang, Changyou
    Wang, Qiyu
    Zhang, Qimin
    Meng, Jingwei
    IAENG International Journal of Applied Mathematics, 2023, 53 (04)
  • [40] Qualitative behavior of a higher-order fuzzy difference equation
    Yalcinkaya, Ibrahim
    Tollu, Durhasan Turgut
    Khastan, Alireza
    Ahmad, Hijaz
    Botmart, Thongchai
    AIMS MATHEMATICS, 2023, 8 (03): : 6309 - 6322