On the dynamics of a five-order fuzzy difference equation

被引:19
|
作者
Wang, Changyou [1 ,2 ]
Su, Xiaolin [1 ]
Liu, Ping [1 ]
Hu, Xiaohong [1 ]
Li, Rui [3 ]
机构
[1] Chongqing Univ Posts & Telecommun, Coll Sci, Chongqing 400065, Peoples R China
[2] Chengdu Univ Informat Technol, Sch Appl Math, Chengdu 610225, Sichuan, Peoples R China
[3] Chongqing Univ Posts & Telecommun, Coll Automat, Chongqing 400065, Peoples R China
来源
关键词
Fuzzy difference equation; existence; uniqueness; equilibrium point; asymptotic behavior; BEHAVIOR; SYSTEMS;
D O I
10.22436/jnsa.010.06.40
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Our aim in this paper is to investigate the existence and uniqueness of the positive solutions and the asymptotic behavior of the equilibrium points of the fuzzy difference equation x (n+1) = Ax(n-1)x(n-2)/D + Bx(n-3) + Cx(n-4), n = 0, 1, 2, ... , where x n is a sequence of positive fuzzy numbers, the parameters A, B, C, D and the initial conditions x(-4), x(-3), x(-2), x(-1), x(0) are positive fuzzy numbers. Moreover, some numerical examples to the difference system are given to verify our theoretical results. (C) 2017 All rights reserved.
引用
收藏
页码:3303 / 3319
页数:17
相关论文
共 50 条
  • [1] REPRESENTATION OF SOLUTIONS OF A SYSTEM OF FIVE-ORDER NONLINEAR DIFFERENCE EQUATIONS
    Berkal, M.
    Berehal, K.
    Rezaiki, N.
    JOURNAL OF APPLIED MATHEMATICS & INFORMATICS, 2022, 40 (3-4): : 409 - 431
  • [2] Five-order Extrapolation Algorithms for Laplace Equation with Linear Boundary Condition
    Cheng, Pan
    Lin, Zhi
    Xie, Peng
    JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2014, 16 (01) : 139 - 148
  • [3] DYNAMICS OF A HIGH-ORDER NONLINEAR FUZZY DIFFERENCE EQUATION
    Wang, Changyou
    Li, Jiahui
    Jia, Lili
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2021, 11 (01): : 404 - 421
  • [4] The Effects of Five-Order Nonlinear on the Dynamics of Dark Solitons in Optical Fiber
    He, Feng-Tao
    Wang, Xiao-Lin
    Duan, Zuo-Liang
    SCIENTIFIC WORLD JOURNAL, 2013,
  • [5] On the dynamics of a higher-order fuzzy difference equation with rational terms
    Yalcinkaya, Ibrahim
    El-Metwally, Hamdy
    Bayram, Mustafa
    Tollu, Durhasan Turgut
    SOFT COMPUTING, 2023, 27 (15) : 10469 - 10479
  • [6] On the dynamics of a higher-order fuzzy difference equation with rational terms
    İbrahim Yalçınkaya
    Hamdy El-Metwally
    Mustafa Bayram
    Durhasan Turgut Tollu
    Soft Computing, 2023, 27 : 10469 - 10479
  • [7] A five-order mode converter for multimode waveguide
    Low, ALY
    Yong, YS
    You, AH
    Chien, SF
    Teo, CF
    IEEE PHOTONICS TECHNOLOGY LETTERS, 2004, 16 (07) : 1673 - 1675
  • [8] On Third Order Fractal Fuzzy Difference Equation
    Zhang, Qianhong
    Liu, Jingzhong
    Shao, Yuanfu
    INTERNATIONAL SYMPOSIUM ON FUZZY SYSTEMS, KNOWLEDGE DISCOVERY AND NATURAL COMPUTATION (FSKDNC 2014), 2014, : 391 - 400
  • [9] On first order fuzzy Ricatti difference equation
    Zhang, Qianhong
    Yang, Lihui
    Liao, Daixi
    INFORMATION SCIENCES, 2014, 270 : 226 - 236
  • [10] RETRACTED: Global Dynamics of Sixth-Order Fuzzy Difference Equation (Retracted Article)
    Khaliq, Abdul
    Adnan, Muhammad
    Khan, Abdul Qadeer
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2021, 2021