Effects of High-Volume Ground Slag Powder on the Properties of High-Strength Concrete under Different Curing Conditions

被引:3
|
作者
Zhou, Yuqi [1 ,2 ]
Sun, Jianwei [2 ,3 ]
Zhang, Zengqi [4 ]
机构
[1] China Construct First Grp Construct & Dev Co Ltd, Beijing 100102, Peoples R China
[2] Tsinghua Univ, Dept Civil Engn, Beijing 100084, Peoples R China
[3] Qingdao Univ Technol, Sch Civil Engn, Qingdao 266033, Peoples R China
[4] Univ Sci & Technol Beijing, Sch Met & Ecol Engn, Beijing 100083, Peoples R China
来源
CRYSTALS | 2021年 / 11卷 / 04期
基金
中国国家自然科学基金;
关键词
GSP; high strength; hydration; strength; penetrability; BLAST-FURNACE SLAG; CALCIUM SILICATE HYDRATE; EARLY-AGE BEHAVIOR; FLY-ASH; MECHANICAL-PROPERTIES; RICE HUSK; PERFORMANCE; RESISTANCE; GGBS; MICROSTRUCTURE;
D O I
10.3390/cryst11040348
中图分类号
O7 [晶体学];
学科分类号
0702 ; 070205 ; 0703 ; 080501 ;
摘要
Massive high-strength concrete structures tend to have a high risk of cracking. Ground slag powder (GSP), a sustainable and green industrial waste, is suitable for high-strength concrete. We carried out an experimental study of the effects of GSP with a specific surface area of 659 m(2)/kg on the hydration, pore structure, compressive strength and chloride ion penetrability resistance of high-strength concrete. Results show that adding 25% GSP increases the adiabatic temperature rise of high-strength concrete, whereas adding 45% GSP decreases the initial temperature rise. Incorporating GSP refines the pore structure to the greatest extent and improves the compressive strength and chloride ion penetrability resistance of high-strength concrete, which is more obvious under early temperature-matching curing conditions. Increasing curing temperature has a more obvious impact on the pozzolanic reaction of GSP than cement hydration. From a comprehensive perspective, GSP has potential applications in the cleaner production of green high-strength concrete.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Properties of high-volume iron tailing powder concrete under different curing conditions
    Han, Fanghui
    Luo, Ao
    Liu, Juanhong
    Zhang, Zengqi
    CONSTRUCTION AND BUILDING MATERIALS, 2020, 241
  • [2] Properties of high-volume limestone powder concrete under standard curing and steam-curing conditions
    Zhang, Zengqi
    Wang, Qiang
    Chen, Honghui
    POWDER TECHNOLOGY, 2016, 301 : 16 - 25
  • [3] Hydration, mechanical properties and durability of high-strength concrete under different curing conditions
    Fanghui Han
    Zengqi Zhang
    Journal of Thermal Analysis and Calorimetry, 2018, 132 : 823 - 834
  • [4] Hydration, mechanical properties and durability of high-strength concrete under different curing conditions
    Han, Fanghui
    Zhang, Zengqi
    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2018, 132 (02) : 823 - 834
  • [5] Curing Effects on High-Strength Concrete Properties
    Wedatalla, Afaf M. O.
    Jia, Yanmin
    Ahmed, Abubaker A. M.
    ADVANCES IN CIVIL ENGINEERING, 2019, 2019
  • [6] Comparison of the properties between high-volume fly ash concrete and high-volume steel slag concrete under temperature matching curing condition
    Shi Mengxiao
    Wang Qiang
    Zhou Zhikai
    CONSTRUCTION AND BUILDING MATERIALS, 2015, 98 : 649 - 655
  • [7] Properties of Concrete with High-volume Limestone Powder under Low Temperature Conditions
    Song, ShaoMin
    Bao, WenZhong
    Zhao, WenXin
    Jin, Dongmin
    ADVANCED RESEARCH ON INDUSTRY, INFORMATION SYSTEM AND MATERIAL ENGINEERING, 2013, 675 : 296 - +
  • [8] Development of High-Strength Geopolymer Concrete Incorporating High-Volume Copper Slag and Micro Silica
    Arunachelam, Nagarajan
    Maheswaran, Jeyaprakash
    Chellapandian, Maheswaran
    Murali, Gunasekaran
    Vatin, Nikolai Ivanovich
    SUSTAINABILITY, 2022, 14 (13)
  • [9] Mechanical Properties of Steam Cured High-Strength Steel Fiber-Reinforced Concrete with High-Volume Blast Furnace Slag
    Jun-Mo Yang
    Doo-Yeol Yoo
    You-Chan Kim
    Young-Soo Yoon
    International Journal of Concrete Structures and Materials, 2017, 11 : 391 - 401
  • [10] Mechanical Properties of Steam Cured High-Strength Steel Fiber-Reinforced Concrete with High-Volume Blast Furnace Slag
    Yang, Jun-Mo
    Yoo, Doo-Yeol
    Kim, You-Chan
    Yoon, Young-Soo
    INTERNATIONAL JOURNAL OF CONCRETE STRUCTURES AND MATERIALS, 2017, 11 (02) : 391 - 401