Enhanced Visible-Light Photocatalytic Degradation of Antibiotics by MoS2-Modified U-g-C3N4/T-g-C3N4 Isotypic Heterojunction

被引:7
|
作者
Liu, Hongjin [1 ]
Wang, Yu [1 ]
Lv, Jun [1 ,2 ]
Xu, Guangqing [1 ,2 ]
Zhang, Xinyi [3 ]
Wu, Yucheng [1 ,2 ]
机构
[1] Hefei Univ Technol, Sch Mat Sci & Engn, Hefei 230009, Anhui, Peoples R China
[2] Key Lab Adv Funct Mat & Devices Anhui Prov, Hefei 230009, Anhui, Peoples R China
[3] Monash Univ, Sch Chem, Clayton, Vic 3800, Australia
基金
中国国家自然科学基金;
关键词
MoS2; ternary heterojunction; visible light; tetracycline hydrochloride; photodegradation; GRAPHITIC CARBON NITRIDE; HYDROGEN-EVOLUTION; G-C3N4; NANOSHEETS; MOS2; WATER; TETRACYCLINE; REDUCTION; CATALYST; HYBRID; DYE;
D O I
10.1142/S179329201950111X
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Based on U-g-C3N4 (U-gCN) and T-g-C3N4 (T-gCN) prepared with urea and thiourea as raw materials, respectively, a visible-light-driven MoS2-modified U-gCN/T-gCN/MoS2 (UTM) ternary heterojunction photocatalyst was successfully prepared using a sonication and bathing method. The photocatalytic activity of as-prepared photocatalyst was evaluated through the degradation of tetracycline hydrochloride (TC) and Rhodamine B (RhB) under the visible light irradiation. The UTM ternary heterojunction showed remarkably enhanced photocatalytic activity. For the degradation of TC and RhB, the degradation rates of 93.9% and 99.9% have been achieved after being irradiated under visible light for 2 h and 1 h, respectively. The enhanced photocatalytic performance can be ascribed to the role of loaded MoS2 cocatalyst and the well-formed interfaces between U-gCN and T-gCN, which not only enhance the light absorption, but also accelerate the separation and transfer of photogenerated electron-hole pairs. Furthermore, UTM ternary heterojunction has excellent recyclability and chemical stability. The photodegradation rates of 89.9% and 96.78% of TC and RhB have been obtained, respectively, after being reused for five times. Sacrificial agent tests demonstrate that center dot O-2(-) is the major reactive species in the photocatalytic reaction system.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] Synthesis of Chromium Doped g-C3N4/CeO2 with Enhanced Visible-Light Photocatalytic Levofloxacin Degradation
    Alaeddine Maddouri
    khawla Omri
    Beyram Trifi
    Ouassim Ghodbane
    Salah Kouass
    Chemistry Africa, 2025, 8 (2) : 641 - 654
  • [32] Biomass carbon modified Z-scheme g-C3N4/Co3O4 heterojunction with enhanced visible-light photocatalytic activity
    Zhao, Xiaoxu
    Lu, Ziyang
    Ji, Rong
    Zhang, Menghan
    Yi, Chengwu
    Yan, Yongsheng
    CATALYSIS COMMUNICATIONS, 2018, 112 : 49 - 52
  • [33] A novel Z-scheme heterojunction g-C3N4/g-C3N4/Pr6O11 for efficient visible-light photocatalytic degradation of sulfonamide
    Li, Qin
    He, Siyuan
    Wang, Liang
    Zhao, Mengxin
    Guo, Tao
    Ma, Xiaohu
    Meng, Zhe
    APPLIED ORGANOMETALLIC CHEMISTRY, 2024, 38 (04)
  • [34] Origin of the enhanced visible-light photocatalytic activity of CNT modified g-C3N4 for H2 production
    Chen, Yilin
    Li, Jianghua
    Hong, Zhenhua
    Shen, Biao
    Lin, Bizhou
    Gao, Bifen
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2014, 16 (17) : 8106 - 8113
  • [35] Dopamine Modified g-C3N4 and Its Enhanced Visible-Light Photocatalytic H2-Production Activity
    Xia, Pengfei
    Liu, Mingjin
    Cheng, Bei
    Yu, Jiaguo
    Zhang, Liuyang
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2018, 6 (07): : 8945 - 8953
  • [36] Preparation of CdS/ g-C3N4/ MOF composite with enhanced visible-light photocatalytic activity for dye degradation
    Chen, Ying
    Zhai, Boyin
    Liang, Yuning
    Li, Yongchao
    Li, Jing
    JOURNAL OF SOLID STATE CHEMISTRY, 2019, 274 : 32 - 39
  • [37] Construction of 3D Hierarchical GO/MoS2/g-C3N4 Ternary Nanocomposites with Enhanced Visible-Light Photocatalytic Degradation Performance
    Yan, Jia
    Song, Zhilong
    Wang, Xin
    Xu, Yuanguo
    Pu, Wenjie
    Ji, Haiyan
    Xu, Hui
    Yuan, Shouqi
    Li, Huaming
    CHEMISTRYSELECT, 2019, 4 (24): : 7123 - 7133
  • [38] Synthesis of MoS2/g-C3N4 nanocomposites with enhanced visible-light photocatalytic activity for the removal of nitric oxide (NO)
    Wen, M. Q.
    Xiong, T.
    Zang, Z. G.
    Wei, W.
    Tang, X. T.
    Dong, F.
    OPTICS EXPRESS, 2016, 24 (10): : 10205 - 10212
  • [39] A novel MoS2-modified hybrid nanodiamond/g-C3N4 photocatalyst for photocatalytic hydrogen evolution
    Su, Li-Xia
    Lou, Qing
    Shan, Chong-Xin
    Du, Wen-Jing
    CHEMICAL PHYSICS, 2024, 577
  • [40] Mesoporous TiO2/g-C3N4 Microspheres with Enhanced Visible-Light Photocatalytic Activity
    Wei, Hao
    McMaster, William A.
    Tan, Jeannie Z. Y.
    Cao, Lu
    Chen, Dehong
    Caruso, Rachel A.
    JOURNAL OF PHYSICAL CHEMISTRY C, 2017, 121 (40): : 22114 - 22122