Enhanced Visible-Light Photocatalytic Degradation of Antibiotics by MoS2-Modified U-g-C3N4/T-g-C3N4 Isotypic Heterojunction

被引:7
|
作者
Liu, Hongjin [1 ]
Wang, Yu [1 ]
Lv, Jun [1 ,2 ]
Xu, Guangqing [1 ,2 ]
Zhang, Xinyi [3 ]
Wu, Yucheng [1 ,2 ]
机构
[1] Hefei Univ Technol, Sch Mat Sci & Engn, Hefei 230009, Anhui, Peoples R China
[2] Key Lab Adv Funct Mat & Devices Anhui Prov, Hefei 230009, Anhui, Peoples R China
[3] Monash Univ, Sch Chem, Clayton, Vic 3800, Australia
基金
中国国家自然科学基金;
关键词
MoS2; ternary heterojunction; visible light; tetracycline hydrochloride; photodegradation; GRAPHITIC CARBON NITRIDE; HYDROGEN-EVOLUTION; G-C3N4; NANOSHEETS; MOS2; WATER; TETRACYCLINE; REDUCTION; CATALYST; HYBRID; DYE;
D O I
10.1142/S179329201950111X
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Based on U-g-C3N4 (U-gCN) and T-g-C3N4 (T-gCN) prepared with urea and thiourea as raw materials, respectively, a visible-light-driven MoS2-modified U-gCN/T-gCN/MoS2 (UTM) ternary heterojunction photocatalyst was successfully prepared using a sonication and bathing method. The photocatalytic activity of as-prepared photocatalyst was evaluated through the degradation of tetracycline hydrochloride (TC) and Rhodamine B (RhB) under the visible light irradiation. The UTM ternary heterojunction showed remarkably enhanced photocatalytic activity. For the degradation of TC and RhB, the degradation rates of 93.9% and 99.9% have been achieved after being irradiated under visible light for 2 h and 1 h, respectively. The enhanced photocatalytic performance can be ascribed to the role of loaded MoS2 cocatalyst and the well-formed interfaces between U-gCN and T-gCN, which not only enhance the light absorption, but also accelerate the separation and transfer of photogenerated electron-hole pairs. Furthermore, UTM ternary heterojunction has excellent recyclability and chemical stability. The photodegradation rates of 89.9% and 96.78% of TC and RhB have been obtained, respectively, after being reused for five times. Sacrificial agent tests demonstrate that center dot O-2(-) is the major reactive species in the photocatalytic reaction system.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Ag modified g-C3N4 composites with enhanced visible-light photocatalytic activity for diclofenac degradation
    Zhang, Wei
    Zhou, Li
    Deng, Huiping
    JOURNAL OF MOLECULAR CATALYSIS A-CHEMICAL, 2016, 423 : 270 - 276
  • [2] Synthesis of g-C3N4/CuS Heterojunction with Enhanced Photocatalytic Activity Under Visible-Light
    Wang, Fan
    Zeng, Qingru
    Tang, Jinping
    Peng, Liang
    Shao, Jihai
    Luo, Si
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2020, 20 (09) : 5896 - 5905
  • [3] NiFe2O4/g-C3N4 heterojunction composite with enhanced visible-light photocatalytic activity
    Liu, Yong
    Song, Yuchun
    You, Yaohui
    Fu, Xiaojing
    Wen, Jing
    Zheng, Xiaogang
    JOURNAL OF SAUDI CHEMICAL SOCIETY, 2018, 22 (04) : 439 - 448
  • [4] Ti3C2 MXene modified g-C3N4 with enhanced visible-light photocatalytic performance for NO purification
    Li, Junlian
    Zhang, Qian
    Zou, Yanzhao
    Cao, Yuehan
    Cui, Wen
    Dong, Fan
    Zhou, Ying
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2020, 575 (575) : 443 - 451
  • [5] In Situ Construction of g-C3N4/g-C3N4 Metal-Free Heterojunction for Enhanced Visible-Light Photocatalysis
    Dong, Fan
    Zhao, Zaiwang
    Xiong, Ting
    Ni, Zilin
    Zhang, Wendong
    Sun, Yanjuan
    Ho, Wing-Kei
    ACS APPLIED MATERIALS & INTERFACES, 2013, 5 (21) : 11392 - 11401
  • [6] In situ construction of an SnO2/g-C3N4 heterojunction for enhanced visible-light photocatalytic activity
    Chen, Xi
    Zhou, Banghong
    Yang, Shuanglei
    Wu, Hanshuo
    Wu, Yuxin
    Wu, Laidi
    Pan, Jun
    Xiong, Xiang
    RSC ADVANCES, 2015, 5 (84) : 68953 - 68963
  • [7] Synthesis of a reticular porous MoS2/g-C3N4 heterojunction with enhanced visible light efficiency in photocatalytic degradation of RhB
    Gao, Hong
    Liu, Yang
    Wang, Lijun
    Zhu, Jianchao
    Gao, Shengwang
    Xia, Xunfeng
    RESEARCH ON CHEMICAL INTERMEDIATES, 2019, 45 (07) : 3687 - 3703
  • [8] Synthesis of a reticular porous MoS2/g-C3N4 heterojunction with enhanced visible light efficiency in photocatalytic degradation of RhB
    Hong Gao
    Yang Liu
    Lijun Wang
    Jianchao Zhu
    Shengwang Gao
    Xunfeng Xia
    Research on Chemical Intermediates, 2019, 45 : 3687 - 3703
  • [9] V2C MXene-modified g-C3N4 for enhanced visible-light photocatalytic activity
    Xu, Ruizheng
    Wei, Guiyu
    Xie, Zhemin
    Diao, Sijie
    Wen, Jianfeng
    Tang, Tao
    Jiang, Li
    Li, Ming
    Hu, Guanghui
    JOURNAL OF ALLOYS AND COMPOUNDS, 2024, 970
  • [10] g-C3N4 modified Bi2O3 composites with enhanced visible-light photocatalytic activity
    Li, Yeping
    Wu, Shilong
    Huang, Liying
    Xu, Hui
    Zhang, Rongxian
    Qu, Minglan
    Gao, Qiang
    Li, Huaming
    JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, 2015, 76 : 112 - 119