Spectral-Spatial Hyperspectral Image Classification via Multiscale Adaptive Sparse Representation

被引:285
|
作者
Fang, Leyuan [1 ]
Li, Shutao [1 ]
Kang, Xudong [1 ]
Benediktsson, Jon Atli [2 ]
机构
[1] Hunan Univ, Coll Elect & Informat Engn, Changsha 410082, Hunan, Peoples R China
[2] Univ Iceland, Fac Elect & Comp Engn, IS-101 Reykjavk, Iceland
来源
基金
中国国家自然科学基金;
关键词
Classification; hyperspectral image (HSI); multiscale adaptive sparse representation (MASR); multiscale spatial information; sparse representation; REMOTE-SENSING IMAGES; SEMISUPERVISED CLASSIFICATION; FEATURE-EXTRACTION;
D O I
10.1109/TGRS.2014.2318058
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Sparse representation has been demonstrated to be a powerful tool in classification of hyperspectral images (HSIs). The spatial context of an HSI can be exploited by first defining a local region for each test pixel and then jointly representing pixels within each region by a set of common training atoms (samples). However, the selection of the optimal region scale (size) for different HSIs with different types of structures is a nontrivial task. In this paper, considering that regions of different scales incorporate the complementary yet correlated information for classification, a multiscale adaptive sparse representation (MASR) model is proposed. The MASR effectively exploits spatial information at multiple scales via an adaptive sparse strategy. The adaptive sparse strategy not only restricts pixels from different scales to be represented by training atoms from a particular class but also allows the selected atoms for these pixels to be varied, thus providing an improved representation. Experiments on several real HSI data sets demonstrate the qualitative and quantitative superiority of the proposed MASR algorithm when compared to several well-known classifiers.
引用
收藏
页码:7738 / 7749
页数:12
相关论文
共 50 条
  • [41] Noise Removal From Hyperspectral Image With Joint Spectral-Spatial Distributed Sparse Representation
    Li, Jie
    Yuan, Qiangqiang
    Shen, Huanfeng
    Zhang, Liangpei
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2016, 54 (09): : 5425 - 5439
  • [42] MSTSENet: Multiscale Spectral-Spatial Transformer with Squeeze and Excitation network for hyperspectral image classification
    Ahmad, Irfan
    Farooque, Ghulam
    Liu, Qichao
    Hadi, Fazal
    Xiao, Liang
    [J]. ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2024, 134
  • [43] SPECTRAL-SPATIAL HYPERSPECTRAL IMAGE CLASSIFICATION VIA LOCALITY AND STRUCTURE CONSTRAINED LOW-RANK REPRESENTATION
    He, Xiang
    Wang, Qi
    Li, Xuelong
    [J]. IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 5744 - 5747
  • [44] Spectral-Spatial Hyperspectral Classification via Structural-Kernel Collaborative Representation
    Tu, Bing
    Zhou, Chengle
    Liao, Xiaolong
    Zhang, Guoyun
    Peng, Yishu
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2021, 18 (05) : 861 - 865
  • [45] ADAPTIVE SPARSE REPRESENTATION FOR HYPERSPECTRAL IMAGE CLASSIFICATION
    Li, Wei
    Du, Qian
    [J]. 2015 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2015, : 4955 - 4958
  • [46] Robust Multiscale Spectral-Spatial Regularized Sparse Unmixing for Hyperspectral Imagery
    Wang, Ke
    Zhong, Lei
    Zheng, Jiajun
    Zhang, Shaoquan
    Li, Fan
    Deng, Chengzhi
    Cao, Jingjing
    Su, Dingli
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2024, 17 : 1269 - 1285
  • [47] Spectral-Spatial Attention Networks for Hyperspectral Image Classification
    Mei, Xiaoguang
    Pan, Erting
    Ma, Yong
    Dai, Xiaobing
    Huang, Jun
    Fan, Fan
    Du, Qinglei
    Zheng, Hong
    Ma, Jiayi
    [J]. REMOTE SENSING, 2019, 11 (08)
  • [48] SPECTRAL-SPATIAL ROTATION FOREST FOR HYPERSPECTRAL IMAGE CLASSIFICATION
    Xia, Junshi
    Bombrun, Lionel
    Berthoumieu, Yannick
    Germain, Christian
    Du, Peijun
    [J]. 2016 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2016, : 5126 - 5129
  • [49] Spectral-Spatial Attention Network for Hyperspectral Image Classification
    Sun, Hao
    Zheng, Xiangtao
    Lu, Xiaoqiang
    Wu, Siyuan
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2020, 58 (05): : 3232 - 3245
  • [50] Hyperspectral image classification using spectral-spatial LSTMs
    Zhou, Feng
    Hang, Renlong
    Liu, Qingshan
    Yuan, Xiaotong
    [J]. NEUROCOMPUTING, 2019, 328 : 39 - 47