Comparing Dynamic Hand Rehabilitation Gestures in Leap Motion Using Multi-Dimensional Dynamic Time Warping

被引:4
|
作者
Walugembe, Hussein [1 ]
Phillips, Chris [1 ]
Requena-Carrion, Jesus [1 ]
Timotijevic, Tijana [1 ]
机构
[1] Queen Mary Univ London, Sch Elect Engn & Comp Sci, London E1 4NS, England
关键词
Joints; Thumb; Power system dynamics; Dynamics; Bones; Optical sensors; Wearable sensors; Dynamic hand gesture; hand rehabilitation; leap motion controller; multi-dimensional dynamic time warping;
D O I
10.1109/JSEN.2020.3047268
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We propose and evaluate the use of Multi-dimensional Dynamic Time Warping (MDTW) for comparing dynamic hand rehabilitation gestures that would be performed by a patient (query) relative to hand gestures prepared by a physiotherapist (reference). MDTW enables us to determine how similar or different a query dynamic hand gesture is to a reference one whilst filtering out unwanted sources of error resulting from positional, rotational or speed differences between the query and the reference actions. It produces a minimum-distance value of a warp path after aligning a query dynamic hand gesture with a reference one. A low minimum-distance value implies the two gestures being compared are similar and high minimum-distance value implies the two gestures vary to a greater extent. When we deliberately compare a specific hand gesture with itself, we obtain a minimum-distance value of 0 indicating the similarity is 100. Furthermore, when we compare two closely similar hand gestures i.e. gesture 1 and gesture 4, a minimum-distance value of 35.9 is obtained. However, when we compare two quite different gestures i.e. gesture 2 and gesture 3, a minimum-distance value of 248.5 is obtained. Therefore, a physiotherapist can establish whether a patient performs hand rehabilitation gestures satisfactorily or an adjustment is required based on the minimum-distance values of the warp paths.
引用
收藏
页码:8002 / 8010
页数:9
相关论文
共 50 条
  • [21] Dynamic Hand Gesture Recognition Using Kinematic Features Based on Dynamic Time Warping
    Pang, Haibo
    Ding, Youdong
    [J]. ADVANCES IN COMPUTING, CONTROL AND INDUSTRIAL ENGINEERING, 2012, 235 : 68 - +
  • [22] Static and Dynamic Hand Gesture Recognition in Depth Data Using Dynamic Time Warping
    Plouffe, Guillaume
    Cretu, Ana-Maria
    [J]. IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2016, 65 (02) : 305 - 316
  • [23] Human motion recognition using isomap and dynamic time warping
    Blackburn, Jaron
    Ribeiro, Eraldo
    [J]. HUMAN MOTION - UNDERSTANDING, MODELING, CAPTURE AND ANIMATION, PROCEEDINGS, 2007, 4814 : 285 - +
  • [24] Dynamic Hand Gesture Recognition With Leap Motion Controller
    Lu, Wei
    Tong, Zheng
    Chu, Jinghui
    [J]. IEEE SIGNAL PROCESSING LETTERS, 2016, 23 (09) : 1188 - 1192
  • [25] Stride Segmentation during Free Walk Movements Using Multi-Dimensional Subsequence Dynamic Time Warping on Inertial Sensor Data
    Barth, Jens
    Oberndorfer, Caecilia
    Pasluosta, Cristian
    Schuelein, Samuel
    Gassner, Heiko
    Reinfelder, Samuel
    Kugler, Patrick
    Schuldhaus, Dominik
    Winkler, Juergen
    Klucken, Jochen
    Eskofier, Bjoern M.
    [J]. SENSORS, 2015, 15 (03) : 6419 - 6440
  • [26] Unsupervised learning motion models using dynamic time warping
    Kulbacki, M
    Bak, A
    [J]. INTELLIGENT INFORMATION SYSTEMS 2002, PROCEEDINGS, 2002, 17 : 217 - 226
  • [27] Dynamic Time Warping for binocular hand tracking and reconstruction
    Romero, Javier
    Kragic, Danica
    Kyrki, Ville
    Argyros, Antonis
    [J]. 2008 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION, VOLS 1-9, 2008, : 2289 - +
  • [28] Hand rehabilitation assessment system using leap motion controller
    Weiss Cohen, Miri
    Regazzoni, Daniele
    [J]. AI & SOCIETY, 2020, 35 (03) : 581 - 594
  • [29] Gamification of Hand Rehabilitation Process Using Virtual Reality Tools Using Leap Motion for hand rehabilitation
    Alimanova, Madina
    Borambayeva, Saulet
    Kozhamzharova, Dinara
    Kurmangaiyeva, Nurgul
    Ospanova, Dinara
    Tyulepberdinova, Gulnar
    Gaziz, Gulnur
    Kassenkhan, Aray
    [J]. 2017 FIRST IEEE INTERNATIONAL CONFERENCE ON ROBOTIC COMPUTING (IRC), 2017, : 336 - 339
  • [30] Hand rehabilitation assessment system using leap motion controller
    Miri Weiss Cohen
    Daniele Regazzoni
    [J]. AI & SOCIETY, 2020, 35 : 581 - 594