Comparison and Evaluation of the Combinations of Feature Selection and Classifier on Microarray Data

被引:0
|
作者
Yan, Chaokun [1 ]
Zhang, Jun [1 ]
Kang, Xi [1 ]
Gong, Zhengze [1 ]
Wang, Jianlin [1 ]
Zhang, Ge [1 ]
机构
[1] Henan Univ, Sch Comp & Informat Engn, Kaifeng, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Cancer classification prediction; Microarray data; Data analysis; Feature selection; Classification prediction; ALGORITHM; PREDICTION;
D O I
10.1109/ICBDA51983.2021.9403151
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
As gene chip technology is widely used in cancer research, a large number of valuable microarray data has been rapidly accumulated. These data have the characteristics of "high-dimensional small samples", in which most genes are unrelated or redundant. For high-dimensional, small-sample, high-noise, and few-sample binary classification datasets, we explore which combination of feature selection method and classifier can achieve the relatively best prediction accuracy, while the number of features included is relatively low. We adopt the standard data analysis procedures: preprocessing the data set, using different feature selection methods to generate feature subsets, and applying different classifiers to predict each feature subset. The results are compared to find out which combination with the relatively high prediction accuracy and the relatively small number of features.
引用
收藏
页码:133 / 137
页数:5
相关论文
共 50 条
  • [31] A Discernibility-Based Approach to Feature Selection for Microarray Data
    Voulgaris, Zacharias
    Magoulas, George D.
    2008 4TH INTERNATIONAL IEEE CONFERENCE INTELLIGENT SYSTEMS, VOLS 1 AND 2, 2008, : 818 - 823
  • [32] A novel hybrid feature selection method for microarray data analysis
    Lee, Chien-Pang
    Leu, Yungho
    APPLIED SOFT COMPUTING, 2011, 11 (01) : 208 - 213
  • [33] Exploring the consequences of distributed feature selection in DNA microarray data
    Bolon-Canedo, Veronica
    Sechidis, Konstantinos
    Sanchez-Marono, Noelia
    Alonso-Betanzos, Amparo
    Brown, Gavin
    2017 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2017, : 1665 - 1672
  • [34] Effective feature selection framework for cluster analysis of microarray data
    Pok, Gouchol
    Liu, Jyh-Charn Steve
    Ryu, Keun Ho
    BIOINFORMATION, 2010, 4 (08) : 385 - 389
  • [35] Feature selection in independent component subspace for microarray data classification
    Zheng, Chun-Hou
    huang, De-S Huang
    Shang, Li
    NEUROCOMPUTING, 2006, 69 (16-18) : 2407 - 2410
  • [36] Feature selection using differential evolution for microarray data classification
    Prajapati S.
    Das H.
    Gourisaria M.K.
    Discover Internet of Things, 2023, 3 (01):
  • [37] Robust Feature Selection for Microarray Data Based on Multicriterion Fusion
    Yang, Feng
    Mao, K. Z.
    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2011, 8 (04) : 1080 - 1092
  • [38] A hybrid feature selection approach for microarray gene expression data
    Tan, Feng
    Fu, Xuezheng
    Wang, Hao
    Zhang, Yanqing
    Bourgeois, Anu
    COMPUTATIONAL SCIENCE - ICCS 2006, PT 2, PROCEEDINGS, 2006, 3992 : 678 - 685
  • [39] Feature Selection Using Counting Grids: Application to Microarray Data
    Lovato, Pietro
    Bicego, Manuele
    Cristani, Marco
    Jojic, Nebojsa
    Perina, Alessandro
    STRUCTURAL, SYNTACTIC, AND STATISTICAL PATTERN RECOGNITION, 2012, 7626 : 629 - 637
  • [40] An enhanced feature selection filter for classification of microarray cancer data
    Mazumder, Dilwar Hussain
    Veilumuthu, Ramachandran
    ETRI JOURNAL, 2019, 41 (03) : 358 - 370